
128-51 R2

I n d e x e r L P T V e r 5

A B I L I T Y
1422 ARNOLD AVE ROSLYN PA 19001 (215) 657-4338 FAX (215) 657-7815

http://www.abilitysystems.com motion@abilitysystems.com

S Y S T E M S

Indexer LPT TM Manual (Version 5)

Copyright 1989-2003, Ability Systems Corporation. All rights
reserved. No part of this publication may be reproduced in any
form, by any method, for any purpose.

Ability Systems Corporation makes no warranty, except as specifi-
cally provided in the Program License Agreement, either
expressed or implied, including but not limited to any implied war-
ranties of merchantability or fitness for a particular purpose,
regarding these materials and makes such materials available sole-
ly on an “as is” basis.

WARNING

DO NOT USE IN LIFE SUPPORT SYSTEMS

READ AND UNDERSTAND THE TERMS OF THE
PROGRAM LICENSE AGREEMENT LOCATED
ON THE DISKETTE PACKAGE. SEND THE
MATERIALS BACK TO THE PLACE OF PUR-
CHASE FOR A REFUND IF YOU DO NOT
AGREE.

UNDERSTAND THE HAZARDS OF MOTION
CONTROL SYSTEMS BEFORE USING THIS
SOFTWARE!

By breaking the seal of the disk package or by using these
materials you agree to be bound by the conditions of the
Program License Agreement.

As per the program License Agreement, Ability Systems
Corporation disclaims liability to anyone for special, collateral,
incidental, or consequential damages in connection with or arising
out of use of these materials. The sole and exclusive liability to
Ability Systems Corporation, regardless of the form of action, shall
be limited to the purchase price of the materials giving rise to
claim.

The entire risk as to the performance of these materials is with
the purchaser. Ability Systems Corporation assumes no respon-
sibility of any kind for errors in the package or for the conse-
quences of such errors. This allocation of risk is reflected in the
purchase price of the product.

Ability Systems Corporation reserves the right to make changes to
and improve its products as it sees fit

IBM is a trademark of IBM Corporation. Windows 95, Windows 98 and
Windows Me are trademarks of Microsoft Corporation. Indexer LPT is a
trademark of Ability Systems Corporation.

Chapter 1

INTRODUCTION

What Indexer LPT is .1

Before You Begin .2

Chapter 2

MOTION BASICS

Step-Direction Control .3

The Translator .3

The Indexer .4

Additional Translator Features .4

Limit Switches .4

Moving the Motor .6

Position Tracking .7

Controlled and Uncontrolled Limit Stopping 7

Simultaneous Motion .8

Circles and Arcs .9

Helical Interpolation .14

The Feed Hold Feature .14

Chapter 3

DEVICE DRIVER BASICS

What a device driver is .19

How a device driver is loaded .19

Indexer LPT is a character type of device driver 19

Chapter 4

HARDWARE REQUIREMENTS

The Parallel Port .21

What an Axis Is .23

Printer Adapter Addressing .23

Line Printers .24

TABLE OF CONTENTSIndexer LPT

iUser Guide

Translator Wiring .24

Limit Switch Wiring .25

Aux Input Wiring .25

Chapter 5

SIGNAL DEFINITIONS

Signal Ground .34

Step .34

Direction .34

Reduced Current .34

All Windings Off .35

Low Limit Switch .35

High Limit Switch .36

Auxiliary Input .37

Chapter 6

GETTING STARTED

Software installation .39

The Hardware Assist Module (HAM) 39

Hardware Checkout Using IXDIAG 40

Using Indexer LPT with Application Programs 40

Programming with Indexer LPT .42

Safety .43

Using Indexer LPT from a DOS Window 43

Programming Indexer LPT from C .46

Programming Indexer LPT from BASIC 48

Programming Indexer LPT from Pascal 50

Chapter 7

FEED RATE OVERRIDE

What Feed Rate Override Is .53

The Hardware Assist Module Supports FRO 54

Indexer LPTTABLE OF CONTENTS

User Guideii

Wiring .55

Activation .56

Resolution .56

Voltage Span .56

Voltage to Speed Transfer Ratio .56

Physical Range Limits .57

Chapter 8

QUEUE PROCESSING

What Queue Processing Is .59

Contouring .60

Velocity Shift .61

Adjusting Velocity Shift .62

Memory Management .63

Flow Control .64

Safety Concerns .67

Speed Control .68

“On the Fly” Digital Output .68

Chapter 9

SWITCH SCANNING & JOYSTICK

The Scanning Feature .73

The Joystick Feature .76

Joystick Switch Assignments .77

Software Setup .79

Chapter 10

SPECIAL CONSIDERATIONS

Computer Occupation .83

Computer Speed .83

Use of the System Clock .84

Unexpected Motion - Safety Considerations 84

TABLE OF CONTENTSIndexer LPT

iiiUser Guide

Chapter 11

COMMANDS

ABORT? .87

ACCEL? .89

ARCSEG_DEGREES? .90

ARC_TO_ANGLE .91

ARC_TO_POINT .95

AUX_INPUT? .98

AXIS .99

AXIS? .101

BIT .102

BIT? .104

CAL .105

CIRCLE .106

COMMAND_MEM? .108

DWELL .110

FEATURES? .111

FEED .112

FEED_ACCEL? .114

FEED_HIGHSPEED? .115

FEED_LOWSPEED? .116

FEEDHOLD? .117

FEEDHOLD_INPUT .119

FEEDHOLD_INPUT? .121

FRO? .122

FRO_DELAY? .123

FRO_HIGH? .124

FRO_HIGHVOLT? .125

FRO_LOW? .126

Indexer LPTTABLE OF CONTENTS

User Guideiv

FRO_LOWVOLT? .127

FRO_RES? .128

FRO_VOLT? .129

HAM_TYPE? .130

HIGHSPEED? .131

HOME .132

JOG .133

JOGSPEED? .135

JOYSTICK_INPUT .136

JOYSTICK_INPUT? .139

JOYSTICK_GO .141

-LIMIT? .143

+LIMIT? .145

LOWSPEED? .147

MAX_Q_MEM? .148

MAX_SPEED? .149

MOVE .150

POSITION? .153

Q_BEGIN .154

Q_EMPTY? .156

Q_END .157

Q_GO .160

Q_MEM? .163

Q_RESET .164

Q_WHERE? .167

REDUCED_CURRENT .169

REDUCED_CURRENT? .170

SAVE_FRO_ENABLE .171

SAVE_FRO_RES .172

TABLE OF CONTENTSIndexer LPT

vUser Guide

SCAN .173

SET_ACCEL .175

SET_ARCSEG_DEGREES .176

SET_FEED_ACCEL .178

SET_FEED_HIGHSPEED .179

SET_FEED_LOWSPEED .180

SET_FRO_DELAY .181

SET_FRO_ENABLE .182

SET_FRO_HIGH .183

SET_FRO_HIGHVOLT .184

SET_FRO_LOW .185

SET_FRO_LOWVOLT .186

SET_FRO_OFFSET .187

SET_FRO_RES .188

SET_HIGHSPEED .189

SET_HOME .190

SET_JOGSPEED .191

SET_LOWSPEED .192

SET_Q_MEM .193

SET_VSHIFT .194

command: SN? .197

UNLOAD .198

VSHIFT? .199

WINDING_POWER .200

WINDING_POWER? .201

Chapter 12

RESPONSE MESSAGE

< ASCII Numeric Value > .199

<ASCII Numeric Value>:<ASCII Numeric Value> 199

Indexer LPTTABLE OF CONTENTS

User Guidevi

abort .199

error,axis .199

error,disabled .200

error,feedhold is enabled .200

error,HAM .200

error,mode .200

error,portmissing .200

error,position .200

error,queue .200

error,queue full .200

error,syntax .200

error,value .201

finished .201

limit,<axis>,<direction> .201

none .201

not supported .201

pre-initialized .201

unknown position .201

TABLE OF CONTENTSIndexer LPT

viiUser Guide

Indexer LPTTABLE OF CONTENTS

User Guideviii

Chapter 1

INTRODUCTION

What Indexer LPT is
Thank you for choosing the Indexer LPT motion control software
sub-system.

Indexer LPT software allows the hardware contained in an ordi-
nary IBM compatible printer port to assume the role of a multi-axis
stepper motor indexer. When used with commercially available
translator drivers, Indexer LPT provides an easy to use and inex-
pensive means of motion control.

A module that is provided with the software affixes to a printer port
and can be wired to implement a sophisticated set of controls,
including joystick jog, feed rate override and feed hold. Each addi-
tional printer port provides sufficient input and output to control
two axes of motion. Indexer LPT supports up to four printer ports,
and can control up to seven axes of motion.

Signals for each axis comprise TTL level outputs controlling
“step”, “direction”, “reduced current”, and “all windings off”. Two
limit switches per axis may be wired directly to the printer connec-
tor. One auxiliary TTL level input per axis is provided to allow for
additional system sensing. Limit switch closures automatically
arrest motion.

The Indexer LPT software loads under Windows as a character
type kernel mode device driver. Commands comprise plain English
type strings of ASCII characters which are written to the “motor”
device in the same manner as writing to a text file. Consequently,

What Indexer LPT isINTRODUCTION

Page 1User Guide

Indexer LPT may be used with a variety of different application
languages. Indexer LPT also communicates back to the user pro-
gram. Messages can be read in the same manner as a file. Simple
motion systems can be implemented even from batch files execut-
ed from a DOS box using the DOS copy command. Since Indexer
LPT is as accessible as a text file, sophisticated machine con-
trollers can be easily implemented by using application programs
written by Ability Systems or others. Each axis may be controlled
with respect to such things as position, home position, maximum
and minimum velocity, acceleration, and automatic return to home.
Query commands allow the user program to read the status of limit
switches, read the auxiliary input lines, read position relative to
home, and read back setup parameters. Advanced commands
include a variety of powerful features including linear interpolation
in up to seven simultaneous axes, circular interpolation, helical
interpolation, vector velocity control, smooth look-ahead contour-
ing, feed rate override, and feed hold..

DANGER
PERSONAL INJURY OR DEATH AND/OR EQUIP-
MENT DAMAGE MAY OCCUR FROM ELECTRICAL
SHOCK OR FROM PHYSICALLY MOVING OBJECTS.

MOTOR DRIVE SYSTEMS SHOULD BE INSTALLED
BY QUALIFIED PERSONNEL FAMILIAR WITH THE
CONSTRUCTION AND OPERATION OF ALL EQUIP-
MENT IN THE SYSTEM AS WELL AS ASSOCIATED
HAZARDS.

Before You Begin
Read the program license agreement provided. Use of this software
comprises your agreement to the terms and conditions of the
license agreement.

If you do not agree to the terms and conditions of the license
agreement, do not remove the distribution media from its sealed
container. If you return all materials provided to the place of pur-
chase in their original condition, you are entitled to a refund for the
purchase price less shipping and handling.

Fill in and return the registration card. This entitles you to thirty
days of free customer support and entitles you to user privileges
such as application notes and discounts on subsequent versions.

INTRODUCTIONBefore You Begin

User GuidePage 2

Chapter 2

MOTION BASICS

Step-Direction Control
The stepper motor itself may rotate in either direction in a sequence
of discrete steps. It is the job of the “translator” or “driver” elec-
tronics to excite the windings of the stepper motor in a manner such
that this motion is accomplished.

The unit which commands the translator when to “step” and in
which direction is called the indexer. The indexer communicates
this information to the translator by means of two logic signal lines
typically called step and direction.

The Translator
The logic level of the direction line dictates whether the next step
to be taken will be in the clockwise or counterclockwise direction.
When a single pulse is issued from the indexer on the “step” line,
the translator responds by manipulating the power to the stepper
motor windings such that the motor moves a single increment in the
direction specified by the direction line.

It can be seen, therefore, that the translator is basically a low level
state machine and power driver. It responds immediately to the
commands of the indexer to change the state of the power on the
windings of the stepper motor such that the prescribed motion is
accomplished. The angular resolution of each step is determined
by the type of translator and stepper motor which is being used.

The TranslatorMOTION BASICS

Page 3User Guide

The Indexer
The indexer, on the other hand, is a high level controller which
issues pulses at rates determined by parameters such as accelera-
tion, starting velocity, maximum velocity, and extent of motion.
The indexer receives commands from the user written program
which prescribes a given end result. For example, the indexer may
receive a command which indicates that the stepper motor is to be
moved 2000 steps in the clockwise direction. The indexer responds
by setting the voltage on the direction signal line to a level which
effects clockwise rotation. Then the indexer issues pulses in such a
manner that the motor accelerates from rest and decelerates to a
controlled stop at a position corresponding to exactly 2000 pulses.

Additional Translator Features
Some translators allow additional control over the power to the
stepper motor. Due to the nature of its design, the stepper motor
draws the most current when it is not in motion. In an effort to con-
serve power, some translators provide a reduced current logical
input line. As the name implies, this signal is used to limit the cur-
rent to the motor windings, thereby allowing the user program to
run the motor with the most amount of power only when it is most
needed. (It should be noted that reducing current also reduces hold-
ing torque, an unsuitable condition in some applications).

In some applications it is desirable to remove the power to the step-
per motor entirely. Some translators accommodate this application
by providing a logic input, usually entitled all windings off. When
this signal is driven to the prescribed state, all power is removed
from the stepper motor windings.

Indexer LPT software uses the TTL level outputs of the parallel
printer port to provide signals for step, direction, reduced current,
and all windings off. Consequently, the computer itself assumes the
role of the indexer in that the computer applies these signals from
the printer adapter to the translator directly.

As was mentioned, only the step and direction signals are required
for basic motion control. Since control is offered over the reduced
current and all windings off signals in a manner which is inde-
pendent of the motion commands, the designer may choose to use
these signals as general purpose outputs.

Limit Switches
Indexers often contain the capability to arrest motion by means of
limit switch inputs.

Two basic purposes for limit switches

MOTION BASICSLimit Switches

User GuidePage 4

The first purpose of limit switches is to define the operational
boundaries of the object which is under position control. When
actuated, the “high” limit switch arrests motion in the positive (+)
direction (you may, for example, define clockwise shaft rotation as
the “positive” direction), and the “low” limit switch arrests motion
in the negative (-) direction. The user program may intentionally
move the controlled object into the limit switches to determine its
operational range. Since each limit switch only arrests motion in
one direction, the user program can sense a limit switch closure and
subsequently move the controlled object in the other direction.
Used in this manner, the application program can use the limit
switches as a means of determining physical boundaries.

Indexer LPT does not accommodate the second basic purpose of
limit switches, which is to limit the over-travel of the object under
position control as a safety measure to prevent potential damage or
injury. In this case, limit switches are used to abruptly arrest
motion, or even disconnect the power source, depending upon the
design of the equipment.

WARNING
The limit switch functions provided by Indexer LPT are
ONLY to be used for the first purpose of establishing oper-
ational boundaries and NOT to be used for the second pur-
pose of safety or over-travel switches.

The exact implementation of safety over-travel limit switches is
highly dependent on the design of the equipment.

In some designs four limit switches are used for a single axis. In an
example, two “inner” limit switches, such as the ones used with
Indexer LPT, are used to delimit the boundaries of normal opera-
tion. Two “outer” limit switches are used as safety switches to
arrest motion in the event that the axis, for whatever reason,
exceeds its normal boundaries and presents a potentially damaging
or dangerous condition if allowed to proceed.

In some applications the “outer” limit safety switches are wired
such that when actuated they remove the power from the motor,
either by means of the translator all windings off input, or by means
of a relay which removes all power.

In other applications, releasing the hold of a motor by removing
power may cause an axis to break free because of gravity or spring
tension and cause other damage. In such a case it may be wiser to
use the safety switches in a manner which forces the motor to hold
its present position.

In still other applications limit safety switches alone provide insuf-

Limit SwitchesMOTION BASICS

Page 5User Guide

ficient protection, and other measures of mechanical design and
configuration such as protective enclosures, slip clutch couplings,
lockouts, etc., must be used to assure the safety of the operation.

It is important to note that IN TIME ALL SWITCHES
WILL FAIL. When working with dangerous or potentially
damaging forces, the entire system must be designed with
safety in mind. Do not rely on switches alone to avert a dis-
aster.

Moving the Motor
Every motion control application has a unique set of dynamic char-
acteristics. For example, the position of an object may be controlled
by means of a stepper motor and a lead screw. In this example some
major forces which the motor must overcome are friction, stiction,
and inertia.

Friction comprises the forces introduced on adjacent physical
members due to the drag produced along the contacting surface.
Stiction is an initial value of friction which must be overcome to
begin motion from rest. Finally, inertia is proportional to the mass
being moved and is the force which resists change in velocity
(resists acceleration).

Stepper motor systems may require a certain amount of resis-
tive forces in order to function properly or to function at all. A
stepper motor may appear not to be operational if motion con-
trol is attempted with a free running (unloaded) shaft.
Resistance may be applied by attaching the stepper motor shaft
to an appropriately sized and loaded pulley, flywheel, or lead
screw.

Most stepper motor applications involve moving an object from
one position to another by accelerating from rest and decelerating
to a controlled stop at the predetermined position. Depending upon
the extent of motion, the motion may begin with a period of accel-
eration, then proceed at a constant velocity before decelerating to a
controlled stop.

Stepper motor velocity is expressed in units of steps per second.
Change in stepper motor velocity, which is acceleration, is
expressed in units of steps per second per second.

Stepper motors must begin motion at an initial starting velocity.
The appropriate initial velocity is governed by the physics of the
particular application and is often determined experimentally.
Indexer LPT stores the value of the initial velocity for each axis in
the lowspeed registers. The user may change the contents of the

MOTION BASICSMoving the Motor

User GuidePage 6

lowspeed registers by means of the set_lowspeed command.

The value of the acceleration which is applied to each axis is stored
in the acceleration registers. The user may change the contents of
the acceleration registers by means of the set_accel command.

In an extended motion, the maximum speed at which the motor will
step is determined by the value of the highspeed registers. The con-
tents of the highspeed registers may be changed using the set_high-
speed command. The highest value which may be placed in the
highspeed registers is governed by the speed of the computer and
may be determined using the max_speed? command. Refer to the
chapter, Special Considerations, for some additional details on
using the max_speed? command.

Indexer LPT accomplishes acceleration controlled motion by
means of the move, feed, and arc commands. Constant velocity
motion is also performed by means of the jog command.

Position Tracking
When Indexer LPT is first invoked, position tracking on every axis
is disabled. Once the set_home command is issued on an axis,
Indexer LPT will automatically track the accumulated steps which
are sent to the axis. The number of pulses which effect positive
rotation are added to the accumulated value and the number of
pulses which effect negative rotation are subtracted from the accu-
mulated value. This accumulated value represents the position of
the axis relative to a reference “position” established by the
set_home command. Indexer LPT tracks position to a magnitude
of 2,147,483,647 steps in either direction.

After each motion command, or after the position? command,
Indexer LPT automatically reports the position of the associated
axis. If the axis has not been initialized by the set_home command,
Indexer LPT reports “unknown position”.

Controlled and Uncontrolled Limit Stopping
When motion is terminated by means of a limit switch closure,
position tracking is lost. This comprises an “uncontrolled limit
stop”. Indexer LPT automatically reports the limit switch inter-
ruption, and all subsequent position queries for the affected axes
receive an “unknown position” response. If subsequent posi-
tion tracking is desired, it must be re-initialized by means of the
set_home command.

Indexer LPT preserves position tracking when a constant velocity
motion effected by the jog command is interrupted by a limit switch
closure. This comprises a “controlled limit stop”. It is important to
note that Indexer LPT position tracking only relates to the control

Controlled and Uncontrolled Limit StoppingMOTION BASICS

Page 7User Guide

signals which are sent to the translator. Consequently, if the hold-
ing force of the stepper motor is overcome by excessive system
inertia, the position tracking information returned by Indexer LPT
will not correspond to the actual position of the motor. This can be
avoided by correctly matching the motor and translator to the
requirements of the application. Acceptable inertial forces should
be maintained by adjusting the jog velocity using the set_jogspeed
command. This velocity is often determined experimentally.

Unless interrupted by limit switch closure, or a abort from a feed
hold procedure, motion commands normally terminate by reporting
the new position of the associated axis (axes). If interruption to
motion occurs, it is also reported. Position tracking information is
always available by means of the position? query command.

A useful application of controlled limit stopping is to use the jog
command in automatically determining the useful range of motion
between limit switches. In this case, the jog command may be used
to move the axis into the limit switches in both directions. The user
program can determine the distance using the position? query.

Simultaneous Motion
Up to six axes can be moved simultaneously using either the move
command or the feed command. Both of these commands use a
“best fit” straight line strategy to accomplish linear interpolation.

In multiple axis moves, the axis which is to be moved the greatest
amount of steps is called the “dominant” axis.

The move command affords the type of control necessary to accom-
plish the most rapid traversal. Using the move command, the
motion parameters set up in the lowspeed, highspeed, and acceler-
ation registers associated with the dominant axis govern the veloc-
ity profile of the dominant axis. The other axes are controlled as
necessary to traverse the best fit linear path to the destination.

The feed command is used in cases where the velocity along the
path of traversal, known as the “vector” velocity, must be held con-
stant. Under the feed command, the motion parameters set up in the
feed_lowspeed, feed_highspeed, and feed_accel registers govern
the velocity profile of the dominant axis. The dominant axis will
begin motion at the velocity set up in the feed_lowspeed register
and accelerate according to the rate set up in the feed_accel regis-
ter. The final velocity (which would be governed by the highspeed
register for the move command), however, is scaled down such that
the vector velocity specified in the feed_highspeed register is
attained. Indexer LPT appropriately scales the final velocity for
one, two, and three dimensional feeds. When more than three axes
are moved simultaneously, three dimensional scaling is used.
Similar to the move command, the axes are controlled as necessary

MOTION BASICSSimultaneous Motion

User GuidePage 8

to traverse the best fit linear path to the destination.

Circles and Arcs

Basic Theory
Circular interpolation is accomplished by means of the circle,
arc_to_angle, and arc_to_point commands. Circles can be tra-
versed in two manners: clockwise, and counterclockwise. The man-
ner of traversal is determined by the first command argument, “cw”
or “ccw”, and the order in which the associated axes are called in
the command line.

In three dimensional space, clockwise rotation from one perspec-
tive appears as counterclockwise rotation from another perspective.
For example, from the perspective of the driver of an automobile,
the tires on the left side of the car are turning clockwise and the
tires on the right are turning counterclockwise. All of the tires,
however, are turning in the same direction. To specify rotation
without ambiguity, Indexer LPT uses a “right hand rule” to distin-
guish circular motion. As such, Indexer LPT uses the order in
which the axes are called in the command argument to distinguish
the perspective in which the circular motion is viewed. Assuming
perpendicular axes, when the first axis called is “wrapped” into the
second axis using fingers of the the right hand, the direction to
which the thumb points determines the direction from which the
circular path is viewed.

The manner of circular traversal between any two perpendicular
axes can be visualized as follows: Place the knuckle of the little
finger of your right hand on a point on the first axis in the positive
direction such that you are able to place the tip of that finger on a

Circles and ArcsMOTION BASICS

Page 9User Guide

VANTAGE POINTFirst Axis

COUNTERCLOCKWISE

CLOCKWISE

Second Axis

point on the second axis in the positive direction. Your little finger
is now pointing in the counterclockwise direction.

As an example, assume a linear translation stage is superimposed
upon this page of text such that movement from left to right extends
the “a” axis in the positive direction and movement from bottom to
top extends the “b” axis in the positive direction. The following
command is issued:

circle:ccw,a,0,b,100

This command draws a circle
whose center point is zero (0)
steps from the present position
in the “a” direction and one
hundred (100) steps from the
present position in the “b”
direction. To determine the
manner in which the circle is
traversed, assume the lower
left corner of the page is the
origin. The bottom edge of the
page, therefore, represents
points on the “a” axis in the positive direction. The left edge of the
page represents points on the “b” axis in the positive direction.
Place the knuckle of the little finger of your right hand on the bot-
tom of the page such that the tip of that finger touches the left edge.
The direction to which your little finger points defines the counter-
clockwise direction.

Now consider the command:

circle:ccw,b,100,a,0

This command also draws a
circle whose center point is
zero (0) steps from the present
position in the “a” direction
and one hundred (100) steps
from the present position in
the the “b” direction. (The
same center point as in the pre-
vious example). Since the “b”
axis is the first axis called in
the command, you must place the knuckle of the little finger of
your right hand on the left edge of the paper, and your finger tip on
the bottom edge. You must reach your hand around to the back of
the page. The direction which your little finger points defines the
counterclockwise direction. (From the perspective of the front of
the page, however, the motion appears to be clockwise).

Two commands are available for drawing arcs: arc_to_angle, and

MOTION BASICSCircles and Arcs

User GuidePage 10

Vantage point is front of page

100

Vantage point is back of page

100

a

b

a

b

arc_to_point.

The arc_to_angle command requires that the user specify the dis-
tance from the present position to the center point of the arc, the
direction of traversal (clockwise or counterclockwise), and the
angle which is to be subtended. Indexer LPT calculates the desti-
nation position and traverses the arc, stopping at that position.

In applications sensitive to accumulated error due to numerical
round off, it is desirable to specify the destination point exactly.
Numerical control machines using “g codes” use this method.
Indexer LPT accommodates this type of control using the
arc_to_point command. The arc_to_point command requires the
direction of traversal (clockwise or counterclockwise), the center
point of the arc, and the end point of the arc. Indexer LPT first cal-
culates the radius of the arc based upon the distance from the pres-
ent position to the center point. The extent of the arc is governed by
a radial projection from the destination point to the center point.
Indexer LPT subtends the arc to the angle delimited by this pro-
jection. If there is a difference between the destination point on the
arc at the completed angle and the destination point specified in the
command line, Indexer LPT makes the best straight line path from
the point on the arc to the destination point specified in the com-
mand line.

Circles and arcs are traversed at vector rates governed by the rules
of motion defined under the feed command.

After executing a circle, arc_to_angle, or arc_to_point command
Indexer LPT reports the destination position of each axis in the
mailbox in the order in which the axes are called in the command
line.

Segmentation
Indexer LPT constructs circles and arcs by means of a succession
of linear interpolations, similar in function to feed commands. In
order to accelerate into, and traverse the arc in a smooth, continu-
ous motion, these feed commands are automatically executed from
the look-ahead queue buffer (for more information about the look-
ahead buffer, refer to the chapter entitle “Queue Processing”).

The method of approximating an arc by means of line segments is
called “segmentation”. Each linear segment represents the chord of
the angle over the arc which is subtended. The angle which the
segment is laid is called the “chordal angle”. The maximum dimen-
sional error which is introduced, called the “chordal”, or “segment”
error can be calculated using the following formula:

Segment Error = Radius X (1 - cos(chordal-angle/2))

The default chordal angle is five degrees In the default configura-
tion, therefore, a complete circle would be approximated using sev-

Circles and ArcsMOTION BASICS

Page 11User Guide

enty two (72) segments.

In order to control segment error, you may use the
set_arcseg_degrees command to set the chordal angle.

In an example, using the circle command, a twenty inch circle is
subtended. Using the default chordal angle of five degrees, the
maximum dimensional error is:

Segment Error = 10 x (1-cos(5/2)) = .0095”

Using the following command, the chordal approximation angle is
changed to one degree:

set_arcseg_degrees:1

The maximum error due to segmentation is reduced, shown by the
following calculation:

Segment Error = 10 x (1-cos(1/2)) = .00033”

With a chordal angle of one degree, a complete circle would be
approximated with 360 linear segments. These segments are auto-
matically loaded and executed from the look-ahead buffer. Once the
motors have completed their cycle, the memory occupied in the
buffer is cleared, and free for use by subsequent commands.

Since all circular interpolation utilizes the look-ahead buffer, if you
attempt to execute a command which uses more memory than you
have available for this purpose (memory is reserved using the
set_q_mem command), then the command will fail and the follow-
ing message will appear in the mailbox:

error,queue full

Each linear segment of a circular interpolation uses the amount of
queue memory as a single feed command. The amount of memory
that any interpolation requires is determined by the number of seg-
ments that it uses. For example, assume that the value of the
set_arcseg_degrees register is 5, and the following command is
issued:

arc_to_angle:ccw,a,0,b,1000,17

This command subtends an arc angle of seventeen degrees. Four
segments are used to approximate the arc. Please note that the accu-
racy of the angle is NOT affected by the set_arcseg_degrees regis-
ter. A seventeen degree arc is subtended using four linear segments,
three which are included in five degree chords, and one in the
remaining two degree chord. The amount of memory required in
the queue buffer to execute this command is equivalent to four feed
commands.

The amount of segments used in a circular interpolation can be very

MOTION BASICSCircles and Arcs

User GuidePage 12

large, especially considering the large angles which may be
required in helical interpolations. You can determine the amount of
queue memory a command will use by means of the
command_mem? query. You can determine how much queue mem-
ory is available using the q_mem? query.

Calculation Dwell
In operations where continuous motion is required between linear
and circular interpolations, Indexer LPT allows the circular inter-
polation commands to be used in the look-ahead buffer. For this
type of operation, please refer to the chapter entitled “Queue
Processing”.

In cases where circular interpolation commands are not loaded into
the queue buffer, but executed immediately, the amount of time is
that is required for mathematical calculation before the motors
begin motion is called “calculation dwell”.The amount of calcula-
tion dwell is proportional to the number of segments that are being
used to subtend the arc.

For most arcs, which subtend angles 360o or less, calculation dwell
is very small. However, consider the following command:

arc_to_angle:ccw,a,0,b,1000,36000

This command subtends an arc of 36000o (one hundred complete
circles). If a value of 1 is used in the set_arcseg_degrees register,
this motion will be accomplished using the equivalent of 36000
feed commands.

More importantly, this command entails substantial processing, and
consequently incurs substantial calculation dwell. This is to say, the
machine may appear dormant for a enough time so that when
motion commences it may catch a machine operator unaware. This
comprises a safety consideration. Please, then, consider the follow-
ing warning notice carefully:

WARNING
When designing a machine that can cause damage and/or
injury due to potentially unexpected motion after long
periods of calculation dwell, it is the responsibility of the
machine designer to implement appropriate lock-outs,
warning annotations, or other mechanisms to alert the
operator that machine motion is impending.

One method may be to use a digital output to light a warning dis-
play, indicating to the operator that the machine is in operation, and
that motion is impending. Other methods may be necessary
depending on the nature of the machine.

Circles and ArcsMOTION BASICS

Page 13User Guide

Helical Interpolation
Helical interpolation is an operation by which two axes traverse a
circular path, while one or more additional axes advance propor-
tionately to the angle subtended in the path of the circle or arc. In a
machine where a stylus is controlled along three orthogonal axes, a
helical interpolation would cause the stylus to follow the path of a
helix, similar in shape to a coil spring, or screw thread.

Indexer LPT has the capability to perform helical interpolation in
up to four simultaneous axes. By definition, two of these axes are
used to subtend the circular path. The other two axes advance pro-
portionately to the subtended angle. In some machine designs the
fourth axis can be used, for example, to keep a rotary axis tangent
to the path of the helix.

The linear components of the commands that accomplish helical
interpolation are added as optional arguments to the circular inter-
polation commands. For example, to subtend a complete circle with
a radius of 1000 in the a and b axis, while advancing the c axis 300
steps, the following command is issued:

circle:ccw,a,0,b,1000,c,300

All motion starts and finishes together. The position of the c axis
will track a path proportional to the angle subtended by the com-
bined motion of the “a” and “b” axes, and come to a controlled stop
when the circle is complete.

In a similar example, the “d” axis is also moved:

circle:ccw,a,0,b,1000,c,300,d,1450

In this example, both the c and the d axis track a path proportion-
al to the angle subtended by the a and b axes.

Similar to the circle command, the arc_to_angle and the
arc_to_point commands accommodate optional linear axes for hel-
ical interpolation.

The Feed Hold Feature
The feed hold feature allows a motion process to be suspended
when the feed hold input is activated.

As long as the feed hold input is activated, the motion process
remains suspended. When the feed hold input is de-activated, the
motion resumes to completion. If, however, the abort input is acti-
vated while a motion process is suspended, the motion process will
not be completed and will be terminated immediately. The abort
input has no effect if the feed hold input is not activated. If a motion
is aborted this message will appear in the mailbox:

MOTION BASICSThe Feed Hold Feature

User GuidePage 14

abort

Motor movements which involve acceleration, such as are effected
by the move and feed commands, will decelerate to a controlled
stop when the feed hold input is activated. Instantaneous move-
ments, such as are effected by the jog command, will stop immedi-
ately.

Limit switch inputs for a designated axis are used for the feed hold
and abort feature. By designating an axis to be used for feed hold
inputs, the high limit switch and low limit switch inputs assume the
role of feed hold input and abort input, respectively.

The high limit switch input on the designated axis controls the feed
hold feature as follows: If the high limit switch input is TTL low,
(such as when it is connected to ground), motion commands are
permitted to proceed normally. Opening the connection causes the
input to be pulled up internally to TTL high, activating the feed
hold feature.

The low limit switch input on the designated axis controls the abort
feature as follows. If the low limit switch input is open (TTL high),
the abort feature is disabled. Closing the connection to ground
(TTL low) activates the abort feature.

In a simplified set up, a feed hold switch may be a normally closed
switch circuit to ground and an abort switch may be a normally
open switch circuit to ground.

In order for the feed hold feature to function, the “mode” of the axis
that is being used must be in either “mode 3” or “mode 1”. The Y
Group axis of the port where the Hardware Assist Module (HAM)
resides is automatically assigned by Indexer LPT as “mode 3”.
The default mode of all other axes is “mode 0”. The “mode 3” axis
is recommended.

If the axis that you intend to use for the feed hold feature is not

The Feed Hold FeatureMOTION BASICS

Page 15User Guide

Feed Hold

Abort
18-25 Ground

High Limit (17)[14]

Low Limit (16)[1]

X-Group Pin Number - []
Y-Group Pin Number - ()

Typical Feed Hold and Abort Switch Wiring

“mode 3”, then the axis must be switched to “mode 1” using the
axis command.

Once the axis is either “mode 3” or set to “mode 1”, the axis can be
designated to provide feed hold inputs using the feedhold_input
command. Several axes may be converted to “mode 1” using the
axis command. Only one axis can be designated to be used for feed
hold inputs.

In an example, assume that the high limit switch input on the “d”
axis is to be used to accommodate the feed hold input. In this case,
the low limit switch input on the “d” axis accommodates the abort
input. To set up the feed hold feature in this manner, first convert
the axis from the “motor control” mode to the “digital output”
mode using the following command:

axis:d,1

Now that the axis has been set to this mode (and cannot be used for
motor control), it can be designated to be used for feed hold inputs
by issuing the following command:

feedhold_input:d,1

WARNING
Observe the following precautions when using the feed
hold feature.
1) Do not use the feed hold feature as a safety stop.
2) The feedhold feature must be initialized in order to func-
tion.
3) Personal injury or equipment damage subject to failure
of the feed hold feature should be averted by appropriate
safety features designed into the system hardware.
4) System hardware design should not allow for inadver-
tent release of the feed hold feature, and consequent dan-
gerous unexpected motion.

Misuse As a Safety Switch
Safety and emergency stop features should not be software depend-
ent. Safety and emergency stop features should be built into the
system hardware design. THERE IS NO SUBSTITUTE FOR A
RAPIDLY ACCESSIBLE, HARD WIRED, EMERGENCY
STOP SYSTEM.

Failure to Initialize
It is the responsibility of your software to initialize the feed hold
feature. It is possible to begin a sequence of motion operations
without initializing the feed hold feature. In a poorly designed sys-
tem, the operator may expect the feed hold feature to function, only

MOTION BASICSThe Feed Hold Feature

User GuidePage 16

to discover, at the most inopportune time, that it has not been ini-
tialized.

A simple software safeguard is to check the initialization of the
feed hold feature before each motion sequence using the feed-
hold_input? command. This, however, is not a complete solution.

Again it should be emphasized:

THERE IS NO SUBSTITUTE FOR A RAPIDLY ACCESSI-
BLE, HARD WIRED, EMERGENCY STOP SYSTEM.

Switch Failure
The feed hold feature will fail to work if not initialized properly. It
will also fail to work if the feed hold circuit fails in a short circuit
mode. In either case, such failure may not be apparent to the oper-
ator until the feature is actually used. Use a properly designed
emergency stop system and an appropriately trained operator
to avoid catastrophe.

Inadvertent Release
As was mentioned, a potentially dangerous condition exists when
an operator expects motion to be interrupted by the feed hold fea-
ture, and, due to some malfunction, the motion continues. A poten-
tially more dangerous condition may exist if the machine is at rest
due to the feed hold feature, and the operator inadvertently releas-
es the feed hold feature, causing unexpected motion. The solution
to this problem depends on the specific application. The best solu-
tion may involve a hard wired indicator. In one example, a double
pole switch (or relay) is used to activate the feed hold input. One
pole is used for the feed hold input to the computer. The other pole
is used to turn on a visible and/or audible warning indicator which
alerts the operator that the machine is dormant because of the feed
hold feature. In another example, a “drop out” relay is used to acti-
vate the feed hold feature. The operator is required to press two
physically separated pushbutton switches, occupying both hands,
before the machine is allowed to resume motion.

The Feed Hold FeatureMOTION BASICS

Page 17User Guide

MOTION BASICS

User GuidePage 18

Chapter 3

DEVICE DRIVER BASICS

What a device driver is
A “device driver” is a program which is generally used for the pur-
pose of providing a universal interface, that is, a standard means of
communication between a user program and system hardware.

This particular device driver communicates with the user program
in ASCII text by means of the operating system’s file control oper-
ations. Consequently, application languages which use Windows or
DOS under Windows to communicate ASCII text to and from files
can be used to control stepper motors using Indexer LPT without
the need for low level hardware control routines or libraries.

How a device driver is loaded
The file interface portion of Indexer LPT is loaded under the
direction of the System Registry when the Windows GUI
(Graphical User Interface) loads after the bootstrap sequence.

Indexer LPT is a character type of device driver
Indexer LPT software operates as a character device. Character
devices are used in applications which communicate by means of a
sequence of characters. Character devices assume “device” names
similar to file names. The device name which is used to communi-
cate with the Indexer LPT software is motor.

Once a character device driver is loaded, it can be accessed by

Indexer LPT is a character type device driverDEVICE DRIVER BASICS

Page 19User Guide

name in a similar manner as a file would be accessed.
Consequently, almost any software which has the capability to con-
trol communication with a file can access a character device driver.

Accessing character devices from DOS
Indexer LPT can be accessed from a DOS box running under
Windows. Please note that since Indexer LPT loads with the
Windows GUI, it cannot be accessed from “DOS Compatibility
Mode”, since to get into this mode Windows unloads the GUI por-
tion of the system. If your application requires only DOS and can-
not use Windows, then the 16 bit Indexer LPT version may be the
most appropriate for your use. (Contact Ability Systems for the
availability of 16 bit Indexer LPT).

As an example of DOS access to Indexer LPT, a stream of char-
acters comprising a sequence of commands can be sent to the motor
device using the DOS “copy” command. Simply use an ASCII text
editor, such as NOTEPAD or DOS’s EDIT, to make a file contain-
ing Indexer LPT commands, one command per line. (The file in
this example must contain no extraneous non printing characters
such as tabs or spaces. The last command must be followed by a
carriage return). Suppose we call this file MYFILE.CMD. The
“motor” device may be issued the commands written in this file by
typing from the DOS prompt:

C>copy myfile.cmd motor<Enter>

Indexer LPT places an answer to the last command which it
receives in a memory area which we call the “mailbox”. The con-
tents of the mailbox can be read just as a file is read.

For example, a user desires to see what is in the mailbox of the
“motor” device just after the Indexer LPT system has loaded and
before any other commands have been issued. The following is
typed from the DOS prompt:

C>type motor<Enter>

The following message appears on the screen:
C>installation successful

Accessing character devices from software
Application software typically accesses files and devices by open-
ing a file number or a “handle” to the file using the “file open”
function provided with the language. Reads and writes to and from
the opened file are accomplished in the manner specified in the
associated language programming manual. Specific examples of
reading and writing to the Indexer LPT “motor” device in several
different languages are given in the examples in the chapter enti-
tled Getting Started.

DEVICE DRIVER BASICSIndexer LPT is a character type device driver

User GuidePage 20

Chapter 4

HARDWARE REQUIREMENTS

The Parallel Port

Parallel Ports
Indexer LPT software converts the parallel printer adapter hard-
ware, called the “parallel port”, from its normal use as a printer
control to a special use as an indexer and industrial controller. IBM
compatible computers can support multiple parallel ports. Each
parallel port is generally presented to the outside world as a twen-
ty five pin D Subminiature female connector. Each port is distin-
guished from other ports by its’ Input/Output (I/O) memory
address. This is referred to in the Resources section of the
Windows Device Manager as the Input/Output Range, and
describes the I/O memory addresses that are accessible on the port.
The lower number of the range is called the port’s “base address”.

Port Types
The original configuration of the IBM Parallel Port Adapter is com-
monly referred to in the industry as “Standard”. However, it is
sometimes referred to “Normal”, “ISA” or “AT”. Indexer LPT
supports this “Standard” configuration.

Since the original inception of the IBM parallel interface, variations
of the parallel port have emerged using differing signal input and
output configurations. One such variation is known as
“Bidirectional”, or BPP. Another is known as the “Enhanced
Parallel Port”, or EPP. BPP and EPP configurations are not sup-
ported by Indexer LPT.

The Parallel PortHARDWARE REQUIREMENTS

Page 21User Guide

As of this writing the latest parallel port standard is known as the
Enhanced Capabilities Port, or “ECP”. The ECP standard is rigidly
defined by the Institute of Electronics Engineers under the IEEE
1284-1994 specification. Some adapter card manufacturers specify
that their product conforms to the IEEE-1284 specification. Others
may simply refer to it as ECP. Indexer LPT supports the IEEE-
1284, or ECP, specification.

On-Board Parallel Port
Most computers include a single integrated parallel port. The port
type and base address are generally configurable in the computer’s
BIOS Setup, which is usually accessible when the computer is
powered up.

We do not recommend using this port for varying reasons. The
most significant reason is that electrostatic damage to this port can-
not be easily repaired. Also, it has been our experience that many
computer manufacturers do not rigidly comply with industry spec-
ifications for the parallel port. Nevertheless, some installations use
this port as a convenient location to install the Hardware Assist
Module (HAM).

If you decide to use the on board port for the HAM, use the com-
puter’s BIOS Setup to configure that port to either “Standard” or
ECP. If Indexer LPT does not recognize the HAM when it loads,
the port is either damaged or incompatible. You will therefore need
to locate the HAM on a connector to a parallel port adapter card.

ISA Parallel Port Adapter Cards
The original (and third party compatible) parallel port for IBM
compatible computers is rugged, easy to configure and inexpensive.
These adapter cards are generally designed for the ISA type bus
connector, and can be purchased to accommodate one or two ports.
Port base addresses are configured by means of jumper connectors
located on the card. When assigning a base address using jumpers,
it is important to make sure that you do not assign a base address
that is being used elswhere in the system.

Some ISA type parallel port adapter cards allow you to select port
types by means of jumpers. For these cards you should select
“Standard” or ECP. Do not select BPP, EPP, or EPP/ECP.

PCi Parallel Port Adapter Cards
Parallel adapter cards designed for use in the PCi bus that support
the ECP specification are available from numerous manufacturers.
These cards are configured by means of manufacturer supplied
software, and do not have jumper selections. Some special consid-
erations will be given in this manual on using these cards, but not
before we describe what an Indexer LPT “axis” is.

HARDWARE REQUIREMENTSThe Parallel Port

User GuidePage 22

What an Axis Is

Symmetrical Set of Signals
Most of the Indexer LPT commands and queries reference a letter
designator that we call an “axis”. In the industry, the word “axis” is
used to refer to the control over a single motor, since a motor is
often used to robotically effect motion along or around a geometric
axis. In this manual we refer to the letter designation that we call an
“axis” as a group of input and output signals generally associated
with the control over a single motor. These signals consist of the
output signals for step, direction, all windings off, and reduced cur-
rent, as well as the input signals for high and low limit switches,
and an auxiliary input line.

Although we call this group of signals an “axis”, some or all of the
signals can be used for purposes other than motor control. For
example, the output signals entitled all windings off and reduced
current are most often used simply as general purpose digital out-
puts.

The “axis” letter designator is used specify the group of signals, the
port on which they reside, and their location on that port. The
“axis” letter designation correlates an Indexer LPT command to
the physical locations of the connector pins to which it applies.

Each Printer Port Controls Two (2) Axes
Each printer port contains two symmetrical sets of axis signals.
Indexer LPT commands access each axis by name. The axis
names are “a”, “b”, “c”, “d”, “e”, “f”, “g” and “h”. The physical
location of the axis is determined by the base address of the print-
er adapter card. The association between axis name and card base
address is shown in Figure 4-1.

In an example, consider a computer is configured for motion con-
trol using a single printer port located at a base address of 378(hex).
The following command:

move:c,5500

would generate 5500 pulses on pin 2 (the step signal) while hold-
ing pin 3 (the direction signal) at a high logic level.

Printer Adapter Addressing

Standard Addresses
IBM compatible computers accommodate up to three “standard”
printer ports at address locations 3BC(hex), 378(hex), or 278(hex).

Non-Standard (PCi) Addresses

Printer Adapter AddressingHARDWARE REQUIREMENTS

Page 23User Guide

Parallel adapter boards that are designed for use on the PCi type bus
are automatically automatically assigned Input/Output addresses
by the operating system. In some cases the automatically assigned
addresses are “Standard” addresses. In other cases they may not be.

The base address of a parallel port installed on a PCi type card can
be determined from the Windows Device Manager. You can launch
the Device Manager by double snapping over the System icon in
the Control Panel, and by then snapping over the Device Manager
tab. To find the base address of an installed parallel port, locate the
port under the Ports section of the Device Manager, right snap
over the particular LPT port icon, and select Properties from the
fold down menu that appears. Under the Resources tab of the
Properties dialog, locate a field entitled Input/Output Range.
The lower of the associated numbers is the base address of the port.

If you are unable to install the PCi ports that you are using at stan-
dard addresses, or if your application requires more than six axes,
then you must use of non-standard addressing. If you cannot locate
instructions on accommodating non-standard addresses in the
README.TXT file of your distribution disk, contact Ability
Systems for detailed instructions.

Line Printers

Cautions Against Inadvertent Writes
Inadvertent writes to a printer port which is used for motor
control may cause unexpected and erratic motor movement,
and/or destroy Indexer LPT setups, requiring re-starting of the
system.

It is therefor not advisable to use a printer, or software set up to use
a printer, on computers dedicated to motion control.

However, on certain systems where the nature of motion control
does not present a safety hazard, some simple precautions are all
that is necessary. Printer output is normally directed to LPT1. If
you must have a printer attached to your system, use LPT1 for the
printer, and the remaining parallel ports for motion control. Make
sure that your system (operating system printer setups) and soft-
ware does not direct its output to parallel ports other than LPT1,
and make sure that motor controls are powered down whenever you
are printing.

Translator Wiring
It is important to realize that the output signals from the printer port
are TTL technology and voltage level. Numerous translators are
available which accept TTL type signals. Consequently, with

HARDWARE REQUIREMENTSTranslator Wiring

User GuidePage 24

Indexer LPT it is possible to configure a motion control system
with nothing more than simple point to point wiring between the
parallel interface and the translators.

It is important to check the signal levels and polarity of the transla-
tor that you are using. For example, most translators accept nega-
tive pulses for the step input, and require that the direction input is
set up and stable during the duration of the pulse. This is the man-
ner in which Indexer LPT functions. However, if your translator
accepts a positive pulses, it may appear as if it is functioning prop-
erly, but may lose step during a change in motor direction. Some
translators have a jumper, or selector switch to specify positive or
negative pulses. Make sure your translator is set up to accept nega-
tive pulses.

Some translators, such as the Gecko drive illustrated in Figure 4-3
and the Pacific Scientific 6410 in Figure 4-7, are optically coupled.
Since TTL outputs reliably sink, but do not source current, these
drives require a small 5 Volt power supply to provide drive current
for the opto-couplers. When using a power supply in this manner,
to assure maximum noise immunity make sure that the +5 Volts
from the power supply does not exceed the open circuit voltage of
the parallel port.

Limit Switch Wiring
In a standard IBM compatible printer adapter, the connections
which Indexer LPT uses as limit switch inputs are pulled up inter-
nally to 5.0 volts through a resistance of 4.7K to 10K ohms.
Grounding these connections by means of an external switch com-
prises a limit switch closure. Examples of how limit switches can
be wired are given in Figures 4-2 through 4-7.

Aux Input Wiring
Each axis has an associated auxiliary input signal line. Unlike the
limit switch inputs, the internal connection to this input has no pull
up resistor, and therefore must be driven by a TTL level signal in
order to function reliably. The auxiliary input is a convenient means
of digital input.

Aux Input WiringHARDWARE REQUIREMENTS

Page 25User Guide

HARDWARE REQUIREMENTS

User GuidePage 26

Step

Direction

2 6 2 62 6

Reduced Current

All Windings Off

Low (-) Limit Switch

High (+) Limit Switch

Auxiliary Input

Signal Ground

CARD BASE ADDRESS

3 7 3 7 3 7

4 8 4 84 8

5 9 5 95 9

1 16 1161 16

1417 14 1714 17

13 121312 1312

18-25 18-2518-25

PIN NUMBERS

AXIS

Reference Group

a b c d e f

x x xy y y

278 (hex) 378 (hex) 3BC (hex)

F
 U

 N
 C

 T
 I

O
 N

Figure 4-1

HARDWARE REQUIREMENTS

Page 27User Guide

B COMMON

ENA/NO PWR

HI/LO PWR

RUN/RESET

HALF/FULL

NEUTRAL

A COMMON

ENA/NO PWR

HI/LO PWR

RUN/RESET

HALF/FULL

NEUTRAL

A COMMON

B COMMON

GROUND

LINE

GROUND

GROUND

LINE

GROUND

HIGH LIMIT

LOW LIMIT

AMERICAN PRECISION INDUSTRIES

115 VOLTS AC

GROUND

TRANSLATOR

CHASSIS

P41 SERIES

API MODEL NO P41-231

MOTOR
A+

A-

B+

B-

BLACK

WHITE

WHITE/GREEN

GREEN

RED

WHITE/RED

SHIELD

HIGH LIMIT

LOW LIMIT

AMERICAN PRECISION INDUSTRIES

115 VOLTS AC

API MODEL NO P41-231

MOTOR

GROUND

TRANSLATOR

P41 SERIES

CHASSIS

A+

A-

B+

B-

WHITE

BLACK

WHITE/GREEN

GREEN

RED

WHITE/RED

SHIELD

6

25
13

21

11

12

9

10
23

24

22

8

7
20

19

1

2

3

14

15

4

5

16

18

17

GROUND

STEP

CW/CCW

NC

CONNECTOR
LPT

GROUND

STEP

CW/CCW

NC

Figure 4-2

WIRING DIAGRAM - API Series Translator

HARDWARE REQUIREMENTS

User GuidePage 28

Wiring Gecko 201/210 Translator

YELLOW

MOTOR

POWERMAX

RED

ORANGE

BLACK

YELLOW

MOTOR

POWERMAX

RED

ORANGE

BLACK

6

25
13

21

11

12

9

10
23

24

22

8

7
20

19

1

2

3

14

15

4

5

16

18

17

24 TO 80 VOLT
POWER SUPPLY

LOW LIMIT

HIGH LIMIT

LOW LIMIT

HIGH LIMIT

TRANSLATOR
GECKO G201/G210

+24 TO 80 VDC

PHASE B

PHASE C

PHASE D

DISABLE

DIR

STEP

C O M M O N

CURRENT SET

CURRENT SET

POWER GROUND

PHASE A

5 VOLT
POWER SUPPLY

+24 TO 80 VDC

PHASE B

PHASE C

PHASE D

DISABLE

DIR

STEP

C O M M O N

CURRENT SET

CURRENT SET

POWER GROUND

PHASE A

TRANSLATOR
GECKO G201/G210

LPT

CONNECTOR

Figure 4-3

WIRING DIAGRAM - Gecko 201/210 Translator

HARDWARE REQUIREMENTS

Page 29User Guide

Wiring Semix RD-022N Translator

5 VOLTS

5V RETURN

Vcc 18v-40v DC

28V RETURN

MOTOR

ORIENTAL MOTOR

PH266-01

28 VOLTS

TRANSLATOR
SEMIX RD-022N

GREEN

BLUE

YELLOW

WHITE

BLACK

RED

C1

C2

A

B

A

B

GND

CCW-

1-2P/2P
GND

CLOCK+

CLOCK-

CCW+

5 VOLTS

5V RETURN

Vcc 18v-40v DC

28V RETURN

MOTOR

ORIENTAL MOTOR

PH266-01

28 VOLTS

TRANSLATOR
SEMIX RD-022N

GREEN

BLUE

YELLOW

WHITE

BLACK

RED

C1

C2

A

B

A

B

GND

CCW-

1-2P/2P
GND

CLOCK+

CLOCK-

CCW+

LOW LIMIT

HIGH LIMIT

LOW LIMIT

HIGH LIMIT

6

25
13

21

11

12

9

10
23

24

22

8

7
20

19

1

2

3

14

15

4

5

16

18

17

LPT
CONNECTOR

Figure 4-4

WIRING DIAGRAM - Semix RD-022N Translator

HARDWARE REQUIREMENTS

User GuidePage 30

Wiring Anaheim DPD Series Translator

Figure 4-5

WIRING DIAGRAM - Anaheim Automation DPD Series Translator

HARDWARE REQUIREMENTS

Page 31User Guide

Wiring - General Controls 29A55 Translator

A

A

B

B

ACV

ACV

6

7

8

9

10

ENABLE

GND

GND

1

2

3

4

5

STEP IN

+5V

HALF/FULL STEP

CW/CCW

2

3

4

5

6

1

GENERAL CONTROLS NO. 29A55

A

A

B

B

ACV

ACV

6

7

8

9

10

ENABLE

GND

GND

1

2

3

4

5

STEP IN

+5V

HALF/FULL STEP

CW/CCW

2

3

4

5

6

1

TRANSLATOR
GENERAL CONTROLS NO. 29A55

1 12

2

5

6

11

8

7

TRANSLATOR

6

25
13

21

11

12

9

10
23

24

22

8

7
20

19

1

2

3

14

15

4

5

16

18

17

GENERAL CONTROLS NO. VRP10-1740

115 VOLTS AC

TRANSFORMER

LOW LIMIT

HIGH LIMIT

HIGH LIMIT

LOW LIMIT

28 VAC

YELLOW

RED

ORANGE

BLACK MOTOR

POWERMAX

YELLOW

RED

ORANGE

BLACK MOTOR

POWERMAX

Figure 4-6

WIRING DIAGRAM - General Controls 29A55 Translator

HARDWARE REQUIREMENTSWiring - Pacific Scientific 6410 Translator

User GuidePage 32

6

25
13

21

11

12

9

10
23

24

22

8

7
20

19

1

2

3

14

15

4

5

16

18

17

5 VOLT
POWER SUPPLY

CONNECTOR

2

3

2

3

4

5

YELLOW

MOTOR

POWERMAX

RED

ORANGE

BLACK

1

1

MOTOR CASE

9EN OUT EM
DC MINUS

DC PLUS

EARTH GND

1

2

3

4

5

6

7

8

DIR +

ENABLE +

EN OUT COL

NOT USED

STEP -

DIR -

ENABLE -

STEP +A

A\

B

B\

GND

HIGH LIMIT

LOW LIMIT

24 TO 75 VOLT
POWER SUPPLY

2

3

2

3

4

5

YELLOW

MOTOR

POWERMAX

RED

ORANGE

BLACK

1

1

MOTOR CASE

9EN OUT EM
DC MINUS

DC PLUS

EARTH GND

1

2

3

4

5

6

7

8

DIR +

ENABLE +

EN OUT COL

NOT USED

STEP -

DIR -

ENABLE -

STEP +A

A\

B

B\

GND

NOTE:
OBSERVE SAFETY PRECAUTIONS
AS PER THE PAC SCI MA6410
INSTALLATION MANUAL

LOW LIMIT

HIGH LIMIT

PACIFIC SCIENTIFIC 6410
TRANSLATOR

PACIFIC SCIENTIFIC 6410
TRANSLATOR

LPT

Figure 4-7

WIRING DIAGRAM - Pacific Scientific 6410 Translator

Chapter 5

SIGNAL DEFINITIONS

The purpose of this section is to provide a description of the signals
which are present on the Printer Adapter card, and how these sig-
nals are used with the Indexer LPT system.

Information concerning the electrical characteristics of these sig-
nals has been obtained from the IBM Technical Reference Manual.
Variations may exist, however it is our experience that these varia-
tions are slight. To determine the exact electrical specifications for
any given printer adapter, refer to the manufacturer’s specifications.

Two groups of signals per adapter
Indexer LPT divides the available connections on each printer
adapter into two essentially identical groups, thereby allowing for
control of two axes per adapter. We shall refer to these groups as the
“X group” and the “Y group”. Grouping associates each pin of the
25 pin connector on the printer adapter card with its function. The
base address of the particular adapter card determines the axis
which each group represents. The association between card
addresses, pin functions, and pin numbers is depicted in Figure 4-
1.

For example, if the base address of an adapter card is 278(hex),
then the “X group” of signals present on that adapter comprises the
“a” axis and the “Y group” of signals on that adapter comprises the
“b” axis. Referring to the signal definitions below, (or Figure 4-1)
the “step” signal for axis “a” is located on connector pin 2 and the
“step” signal for axis “b” is located on connector pin 6.

SIGNAL DEFINITIONS

Page 33User Guide

Signal Ground
The “signal ground” connection referred to in this text is available
at connections on pins 18 through 25.

Step
X group pin number 2

Y group pin number 6

Electrical Characteristics
TTL level output. Sourced from a 74LS374 buffer/latch with 30
ohms of series resistance and .0022uF of parallel capacitance.

Usage
Controls translator “step” or “pulse” input. This signal is normally
high. Negative pulses are issued during commands which cause
motion.

Direction
X group pin number 3

Y group pin number 7

Electrical Characteristics
TTL level output. Sourced from a 74LS374 buffer/latch with 30
ohms of series resistance and .0022uF of parallel capacitance.

Usage
Controls translator “direction” or “clockwise/counterclockwise”
input. The level of this signal determines the direction the motor
will turn when pulses are issued on the associated “step” signal.
This signal is high during rotations in the positive direction, and is
low during rotations in the negative direction.

Reduced Current
X group pin number 4

Y group pin number 8

Electrical Characteristics
TTL level output. Sourced from a 74LS374 buffer/latch with 30
ohms of series resistance and .0022uF of parallel capacitance.

Usage

SIGNAL DEFINITIONSReduced Current

User GuidePage 34

This is an auxiliary output signal which may be used to control a
circuit which commands the translator to reduce the current applied
to the stepper motor windings.

This output responds only to the reduced_current command, and
can therefore alternately be used as a general purpose output signal.

All Windings Off

X group pin number 5

Y group pin number 9

Electrical Characteristics
TTL level output. Sourced from a 74LS374 buffer/latch with 30
ohms of series resistance and .0022uF of parallel capacitance.

Usage
This is an auxiliary output signal which may be used to control the
translator input to remove power from the stepper motor.

This output responds only to the winding_power command, and
can therefore alternately be used as a general purpose output signal.

Low Limit Switch
X group pin number 1

Y group pin number 16

Electrical Characteristics
TTL level input internally pulled high through a 4.7K ohm resistor.
Input characteristics correspond to that of a 74LS240 buffer.

Usage
This signal may be wired in series with a normally open limit
switch which completes a circuit connection to signal ground when
closed.

When this signal is not connected it is internally pulled high, indi-
cating an “open low limit switch” condition. When this signal is
connected to signal ground a “closed low limit switch” condition
prevails.

A “closed low limit switch” condition arrests motion in the nega-
tive (-) direction.

Low Limit SwitchSIGNAL DEFINITIONS

Page 35User Guide

DANGER
The limit switch detection features of this program are
designed only to provide limit detection within the normal
operating region of the device being controlled and NOT to
provide over-travel protection in cases where equipment
damage or personal injury may result.

In cases where equipment damage or personal injury is
possible due to over-travel, other means of limit protection
is imperative.

High Limit Switch
X group pin number 14

Y group pin number 17

Electrical Characteristics
TTL level input internally pulled high through a 4.7K ohm resistor.
Input characteristics correspond to that of a 74LS240 buffer.

Usage
This signal may be wired in series with a normally open limit
switch which completes a circuit connection to signal ground when
closed.

When this signal is not connected it is internally pulled high, indi-
cating an “open high limit switch” condition. When this signal is
connected to signal ground a “closed high limit switch” condition
prevails.

A “closed high limit switch” condition arrests motion in the posi-
tive (+) direction.

DANGER
The limit switch detection features of this program are
designed only to provide limit detection within the normal
operating region of the device being controlled and NOT to
provide over-travel protection in cases where equipment
damage or personal injury may result.

In cases where equipment damage or personal injury is
possible due to over-travel, other means of limit protection
is imperative.

SIGNAL DEFINITIONSHigh Limit Switch

User GuidePage 36

Auxiliary Input
X group pin number 13

Y group pin number 12

Electrical Characteristics
TTL level similar in characteristics to an un-terminated LS-TTL
input.

Usage:
This signal is used as a general purpose input. It must be driven to
logic levels to provide a reliable indication.

Auxiliary InputSIGNAL DEFINITIONS

Page 37User Guide

SIGNAL DEFINITIONS

User GuidePage 38

Chapter 6

GETTING STARTED

Software installation
Make sure to read the installation notes in the README file locat-
ed on the distribution diskette.

Place the distribution diskette in the A:> drive. Select Run from the
Start menu, and type:

A:\Setup

Snap OK to start the Setup procedure. Follow the directions pre-
sented to you in the menus that follow. Make sure to read all the
notes provided in the Help screens by snapping on the Help button
corresponding to each step.

The Hardware Assist Module (HAM)
The Hardware Assist Module, which we refer to as the HAM, is a
small electronic module which attaches to an available printer port
connector. The HAM contains electronics to support the feed rate
override feature (FRO). For wiring to the HAM and use of FRO,
refer to the chapter entitled FEED RATE OVERRIDE.

Make sure that the HAM is attached to an available printer port
connector. The HAM has two connectors, one male (pins), and one
female (sockets). Make sure that the male connector on the HAM
attaches to the female connector on a printer port. To avoid poten-
tial damage to the HAM, DO NOT plug the female connector of
the HAM onto to any male connector on the computer.

The Hardware Assist Module (HAM)GETTING STARTED

Page 39User Guide

Hardware Checkout Using IXDIAG
In the development of control systems it is greatly helpful to make
sure that the hardware elements are functioning properly before
attempting to configure an application program or to write and
debug software. With this in mind, the program IXDIAG.EXE is
supplied with your Indexer LPT package. IXDIAG.EXE can
assist you in your first installation and use of Indexer LPT, and
can also serve as a useful tool in troubleshooting problems with
new designs and system hardware.

IXDIAG.EXE can be launched by snapping over its icon in the
Start->Programs menu.

IXDIAG.EXE allows full access to the functions of Indexer LPT
by means of an easy to use, menu driven interface. This program
allows the user to exercise all of the Indexer LPT commands.

When IXDIAG.EXE is first invoked, it looks for the presence of a
correctly installed Indexer LPT “motor” device. If Indexer LPT
is installed correctly, IXDIAG.EXE will inform the you that the
device driver is present. IXDIAG.EXE will then execute subse-
quent user control over Indexer LPT by means of calls to its
device driver.

If Indexer LPT software is not installed, or if it is not installed cor-
rectly, IXDIAG.EXE reports the difficulties which it encountered.

We recommend that the new user first exercise motion control
hardware by means of IXDIAG.EXE. This program is easy to use,
and provides an excellent means for experimenting with Indexer
LPT commands.

Using Indexer LPT with Application Programs
Application programs written to accommodate various types of
automatic machinery are available from Ability Systems.
Configuring these programs does not require computer program-
ming, but does require a working knowledge of Indexer LPT.

The application programs’ setup menus and dialogs help you asso-
ciate Indexer LPT commands to the task at hand. Once the appli-
cation program is configured, the user interacts with the menus and
prompts of the application program, and communication between
Indexer LPT and the application program occurs in the back-
ground.

For example, consider the design of a cutting tool that uses a motor
to advance a linear stage. Typically, you may start implementing
this design by simply checking the operation of the motor from
IXDIAG.EXE using an Indexer LPT command such as:

Using Indexer LPT with Application ProgramsUsing Indexer LPT

User GuidePage 40

move:a,4000

This command exercises the motor controlled by the “a” axis by
applying 4000 pulses to the translator. The amount that the motor
shaft rotates depends on the internal geometry of the motor and the
configuration of the translator. The linear distance that the stage
subtends depends on the mechanical ratio between the rotation of
the motor shaft and the screw follower or pulley that it is coupled
to. Nevertheless, using the move command you can experiment
with the motor at the lowest and most basic level.

Once you are assured that the motor is moving properly, you may
wish to calibrate the stage by measuring the distance that it moves
for a given amount of step pulses. After you enter this information
(number of steps and corresponding distance) into the stage setup
dialog provided in the application program, you can use the fea-
tures of the application program to control the stage using units of
measure that relate to it’s actual function, e.g. “inches, or millime-
ters” instead of “steps”.

Setup menus and dialogs allow you to use Indexer LPT commands
and queries to design and customize your machine to do such
things as monitor external switches or to activate solenoids. When
designing a machine, you would typically exercise an Indexer
LPT command or query using IXDIAG.EXE to troubleshoot your
wiring at the simplest level. You would then enter that command in
an appropriate dialog of the application program.

For example, the Ability Systems G Code Controller product
allows you to customize “M” code commands with sequences of
Indexer LPT actions. Suppose you wanted to customize “M12” to
activate an air clamp using the Indexer LPT digital output com-
mand:

winding_power:c,0

and you wanted to customize “M13” to release the clamp using:

winding_power:c,1

After wiring the solid state relay that engages the clamp to be acti-
vated by the output signal associated with to these commands, you
can verify its functionality by exercising these commands from
IXDIAG.EXE. Once you have verified that these commands are
appropriate and functioning, you can type them into the list boxs in
the dialog provided in the G Code Controller program for cus-
tomizing M codes After that, the user interacts with the application
program with M12 and M13 to control the clamp. The application
program, in turn, communicates these commands to Indexer LPT.

In another example, suppose you wanted to use the low limit switch
input on the Indexer LPT “f” axis to read a normally open push-
button as a start switch. To do this, you would wire the pushbutton

Using Indexer LPT from Application ProgramsGETTING STARTED

Page 41User Guide

so that it grounded the associated input pin when the button is
pushed. You could verify the integrity of your wiring using the
View Signal Status section of IXDIAG.EXE, watching the low
limit switch status field for this axis change from “0” to “1” when
you pressed the switch.

The Indexer LPT query command to read this switch is:

-limit?:f

The View Signal Status section of IXDIAG.EXE repeatedly issues
this command, updating the display after each try. However, you
can exercise this command from the Command Motor section by
typing the command and pressing Enter. If the switch is open
when you press Enter it will respond with “0”. If the switch is
closed it will respond with “1”. Once you have verified that you
have wired the switch correctly, and that you are using the correct
syntax to query the input pin, you can enter this information into
the dialog that the application program provides to configure an
external start switch. Consequently, when the application program
needs to wait for the condition of the start switch, it will transpar-
ently communicate with Indexer LPT using this command. The
end user need only press the switch at the appropriate time.

These are some of the ways in which you may need to use Indexer
LPT commands when configuring application programs available
from Ability Systems. User written and software available from
third parties may use different configuration techniques, such as
setup scripts.

Programming with Indexer LPT
Indexer LPT receives commands comprised of ordinary ASCII
character strings which are written to the “motor” device in much
the same manner as writing to a file named “motor”. All command
strings must end with a carriage return character.

Indexer LPT leaves an ASCII message in a one-line buffer, which
we call the “mailbox”, after the completion of each command. The
mailbox can be read in much the same manner as reading from a
file. All messages in the mailbox are terminated with a carriage
return character.

Since Indexer LPT is a character device driver, and behaves much
the same as a file, it can be controlled by virtually any program-
ming language which has the capability of communicating ASCII
text to and from a file.

These languages include C, Pascal, and BASIC. Even higher level
languages and programs can be used to communicate with Indexer
LPT.

GETTING STARTEDProgramming with Indexer LPT

User GuidePage 42

The name of the Indexer LPT device is “motor”. When using lan-
guage file handling functions to communicate with Indexer LPT,
use “motor” as the file name.

When communicating with disk files and devices, application lan-
guages usually obtain a “file pointer” by means of a “file open”
command. Subsequent reads and writes are accomplished by refer-
encing this file pointer with the appropriate language function.

Safety
Make sure to read the chapter entitled Special Considerations,
especially the section involving safety.

Be aware that some motion control applications require interaction
between the application program and the operating systesm, as well
as with Indexer LPT, to provide for operator safety. These meas-
ures require a knowledge of both computer programming and
machine design, and cannot be implemented using the simplified
methods outlined in the next section.

Using Indexer LPT from a DOS Window

Sending Text Files to Indexer LPT
One simple means of writing to Indexer LPT is by means of the
DOS “copy” command. The usage of the “copy” command is as
follows:

copy <source file> < destination file>

A file containing Indexer LPT commands can be created using an
ASCII text editor such as Window’s Notepad or DOS’s EDIT. The
transfer of these commands to Indexer LPT is accomplished by
copying this file to a “file” called “motor”.

In an example, motion hardware is wired to printer port hardware
on the “c” axis. Using a text editor, a file named TST1.CMD is cre-
ated. The content of this file is as follows:

move:c,2400

(Make sure you end this line with a carriage return).

This file is copied to the motor device by typing the following from
the DOS prompt:

C>copy tst1.cmd motor<Enter>

The motor will then move 2400 steps in the positive (+) direction.

In another example using the same hardware setup, a file named
TST2.CMD is formed having the following contents:

Using Indexer LPT from a DOS WindowGETTING STARTED

Page 43User Guide

set_home:c
move:c,3500
move:c,-1000
move:c,800
home:c

(Make sure the last line is ended with a carriage return)

This file is copied to the motor device by typing the following from
the DOS prompt:

C> copy tst2.cmd motor<Enter>

The motor will then follow the sequence of 3500 steps in the posi-
tive (+) direction, 1000 steps in the negative (-) direction, 800 steps
in the positive (+) direction, and return to the starting position.

DOS Batch Files
A batch file is essentially a text file that contains a sequence of
DOS commands. Batch files can be composed using a text editor
such as DOS’s EDIT, or Window’s Notepad. The file name exten-
sion for a batch file must be “.BAT”. A batch file can be run from
within a DOS window by typing its name, similar to running an
executable (.EXE) program. You can also construct a Windows
Shortcut to a batch file in the same manner as you can construct a
Shortcut to an executable program.

Using a batch file, you can implement sequences of Indexer LPT
commands for cycling certain types of machinery that requires only
a small amount of program or user interaction. Batch files are also
handy to use in troubleshooting, since they can be quickly made to
implement repetitive sequences.

One easy method is to simply use a batch file to automatically
repeat the previously described method of copying a text file to
Indexer LPT. For example, to do this you may construct a DOS
batch file named SEQUENCE.BAT, which contains the following
ASCII text:

:loop
copy tst2.cmd motor
goto loop

You can execute this batch file by typing the following from the
DOS prompt:

C>sequence<Enter>

It may be desirable to send commands to Indexer LPT directly

GETTING STARTEDUsing Indexer LPT from a DOS Window

User GuidePage 44

from within the batch file by directing the output of the ECHO
command to the “motor” device with the “>” operator. The follow-
ing batch file behaves essentially the same as the previous example:

:loop
echo set_home:c>motor
echo move:c,3500>motor
echo move:c,-1000>motor
echo move:c,800>motor
echo home:c>motor
goto loop

Note that it is not necessary to reset the home position each pass
through the loop. Consequently, the example code may be changed
as follows:

echo set_home:c>motor
:loop
echo move:c,3500>motor
echo move:c,-1000>motor
echo move:c,800>motor
echo home:c>motor
goto loop

This example shows how a batch file may be used to implement a
simple repetitive sequence. The use of batch files is more com-
pletely described in legacy DOS documentation, such as the book
Running MSDOS by Van Wolverton (Microsoft Press).

Using DOS Commands to Read From Indexer LPT
After the execution of each command, Indexer LPT deposits a
string of characters in a one line buffer which can be read similar
to reading a line of text from a file. One simple means of seeing
what is in the buffer is by using the DOS type command. The usage
of the type command is as follows:

C> type <filename><Enter>

For example, immediately after Indexer LPT is installed the
response buffer contains the string, “installation successful”. To
view the contents of the buffer, type the following from a DOS
prompt:

C> type motor<Enter>

The contents of the response buffer will appear on the screen as

Programming Indexer LPT from CGETTING STARTED

Page 45User Guide

shown:
C>installation successful

Programming Indexer LPT from C
In the following example, the C programming language is used to
perform simple reads and writes to the Indexer LPT “motor”
device. When using this example there are some considerations the
programmer should keep in mind.

Two file pointers are opened for the “motor” device. One file point-
er, fpr, is opened for read only; the other file pointer, fpw, is
opened for write only. Consequently, the file pointer fpr is used in
all of read operations and fpw is used in all of the write operations.

Notice that the program opens the read pointer first, checks to see
if it is valid, and exits the program with an error code if the point-
er is not valid. This action checks for the presence of the “motor”
device on the system and exits the program if it is not there.

Consider the situation of opening the write pointer first. If the
“motor” device was not present on the system the program would
create a “counterfeit” file called “motor”. This would then create an
elusive problem. The program would then write to and read from
the “counterfeit” file as if it were writing to and reading from
Indexer LPT, except of course, the Indexer LPT would not be
functioning.

If this error is made it is important to delete the counterfeit “motor”
file before correctly installing the real Indexer LPT “motor”
device. If the counterfeit “motor” file is not removed before
installing Indexer LPT, your operating system will not allow dele-
tion of the counterfeit file until the real Indexer LPT “motor”
device is removed from the system.

If the programmer wishes to convert Indexer LPT step position
string information to a numeric value, the C language atol function
is recommended if you are using a 16 bit compiler. If you are using
a 32 bit compiler, you may use atoi. Indexer LPT tracks position
to a magnitude of 2,147,483,647 steps in either direction.
Consequently, the signed long data type is most appropriate for 16
bit compilers, while an integer will suffice for 32 bit code.

The following example code was tested under the Borland C com-
piler. We have found that Borland C flushes the output buffer
stream during each execution of the fputs() function. Microsoft
C, on the other hand, queues the output buffer. Consequently, when
using Microsoft C, an fflush() function must be performed fol-
lowing each write to assure that the output is sent to the device
when expected.

GETTING STARTEDProgramming Indexer LPT from C

User GuidePage 46

The distribution diskette contains two sample programs in C:
SAMPLTC.C for (Borland) Turbo C, and SAMPLMSC.C for
Microsoft C. SAMPLMSC.C contains an fflush() command after
each device write. SAMPLMSC.C will run under both Microsoft C
and Borland C.

/* Example C program demonstrating the use
of Indexer LPT using one file pointer for
reads and another file pointer for writes
*/
#include stdio.h
main()
{

FILE *fpr, *fpw;
char instring[80];
long position;
if((fpr = fopen(“motor”, “r”)) == NULL)
{

printf(“cannot open motor
device\n”);

exit(1);
}
fpw = fopen(“motor”, “w”);

/* Don’t forget to terminate each
command string with the \n character */

/* Set up for position tracking */
fputs(“set_home:a\n”, fpw);

/* Move the motor */
fputs(“move:a,2000\n”, fpw);

/* Read position from the mailbox */
fgets(instring, 80, fpr);
printf(“%s”, instring);

/* Convert ASCII position to numeric */
position = atol(instring);
printf(“%ld\n”, position);

/* Send the motor home */

Programming Indexer LPT from CGETTING STARTED

Page 47User Guide

fputs(“home:a\n”, fpw);

/* Read mailbox again and print */
fgets(instring, 80, fpr);
printf(“%s”, instring);

fclose (fpw);
fclose (fpr);
exit(0);

}

Programming Indexer LPT from BASIC
In BASIC, the OPEN command is used to associate a file number
with the Indexer LPT “motor” device, and the PRINT # com-
mand is generally used to write to Indexer LPT. For example, to
associate the output file number 2 with Indexer LPT, use the fol-
lowing BASIC command:

OPEN “motor” FOR OUTPUT AS #2

After associating a file number with Indexer LPT, you may now
use the file number as a handle to perform write operations. In this
example, to send the character command string
“move:a,1000,b,2000” to Indexer LPT, use the following
line of BASIC code:

PRINT #2, “move:a,1000,b,2000”

Often it is necessary to format the value of variables into strings
that you send to Indexer LPT. BASIC provides an easy means of
doing this using semicolons as delimiters. For example, suppose
you had a variable, X, whose value was 1000. Consider he follow-
ing line of BASIC code:

PRINT #2, “move:a,”;X

This code formats the value of X into the string that is “printed” to
Indexer LPT. In this example, the string that is actually sent to
Indexer LPT is

move:a,1000

Now consider a variable , X, having a value of 1000, and a vari-
able, Y, having a value of 2000. Consider the following code:

PRINT #2, “move:a,”;X;”b,”;Y

The string that Indexer LPT receives in this example is:

move:a,1000,b,2000

GETTING STARTEDProgramming Indexer LPT from BASIC

User GuidePage 48

To read from the Indexer LPT “motor” device a LINE INPUT
command is recommended instead of the normal INPUT com-
mand. This is due to the fact that some of the Indexer LPT mes-
sages consist of two or more fields separated by commas. Normally
the INPUT command will stop reading after the first comma. The
LINE INPUT command will read up to the carriage return, line
feed sequence, and will therefore capture the entirety of the mes-
sage.

To use LINE INPUT to read from Indexer LPT, you must first
obtain a file number to read. For example, you may use the follow-
ing line of code

OPEN “motor” FOR INPUT AS #1

Now to read the mailbox into a string variable entitled RESP$, use
the following code:

LINE INPUT #1, RESP$

If a numeric value is anticipated, and the programmer wishes to
convert it to a numeric value, the BASIC language VAL$ operator
is recommended. For example, suppose the string variable, RESP$,
contained the ASCII sequence of characters:

3571

To convert this string to a numeric value, and assign that value to a
numeric variable, Z, use the following code:

Z = VAL(RESP$)

In the following program example, GWBASIC is used to perform
simple reads and writes to the Indexer LPT “motor” device. Please
note that GWBASIC may generate an error if a device is opened for
OUTPUT after opening a device of the same name for INPUT. An
error is not generated if the device is first opened for OUTPUT,
then opened for INPUT.

10 OPEN “MOTOR” FOR OUTPUT AS #2
20 OPEN “MOTOR” FOR INPUT AS #1
30 REM Set up for position tracking
40 PRINT #2, “SET_HOME:A”
50 REM Move the motor
60 PRINT #2, “MOVE:A,2000”
70 REM Read position from the mailbox
80 LINE INPUT #1, RESP$
90 REM Convert ASCII position to numeric
100 POSITION = VAL(RESP$)
110 REM Print both ASCII and numeric

Programming Indexer LPT from BASICGETTING STARTED

Page 49User Guide

120 PRINT RESP$,POSITION
130 REM Send the motor home
140 PRINT #2,”HOME:A”
150 REM Read mailbox again and print
160 LINE INPUT #1,RESP$
170 REM Convert ASCII to numeric and print
180 POSITION = VAL(RESP$)
190 PRINT RESP$,POSITION
200 CLOSE #1
210 CLOSE #2
220 END

The manner in which BASIC requires you to use file numbers may
vary, depending on the version of BASIC that you are using. For
example, some versions of Visual BASIC do not allow a file or
device to be assigned a number to read and another number to write
at the same time. In this case, you must close the file number to
write before opening one to read, and vise verse. This can conve-
niently be accommodated in your program with a subroutine, or in
a function call, and it takes relatively little processing time.

Programming Indexer LPT from Pascal
In the following example, Borland Turbo Pascal is used to perform
simple reads and writes to the Indexer LPT “motor” device. In
using this example there are some considerations the programmer
should keep in mind.

Unlike the examples in C and BASIC, only one file variable,
FileVar, is opened for the “motor” device. This file variable is used
for both read and write operations.

In this example a “dummy” read is attempted before the file vari-
able is used for writing. Similar to BASIC, if the “motor” device
does not exist on the system, a run time error is generated and the
program immediately terminates.

The programmer should take the same precautions against creating
a “counterfeit” file named “motor” when using Pascal as with C
and BASIC.

The Pascal Writeln function is used instead of the ordinary
Write function because Writeln includes the carriage return
line feed sequence which Indexer LPT requires.

Similar to the example in BASIC, the Pascal Readln function
grabs the entire message string from the mailbox including the car-
riage return and line feed.

GETTING STARTEDProgramming Indexer LPT from Pascal

User GuidePage 50

In the example the file variable is initialized before each read oper-
ation with a Reset function, and before each write operation with
a Rewrite function. This is necessary to keep the file pointers
properly aligned. In order to conserve code the programmer may
wish to compose a function which writes to the device and also
deposits the response from the mailbox into a string variable. The
purpose of the example, however, is to clearly illustrate writing to
and reading from the Indexer LPT “motor” device.

If the programmer wishes to convert position messages to a numer-
ic value, the Pascal language Val function is recommended, and the
Real data type is appropriate.

:program PascalExample;
var

FileVar : Text;
instring : string[80];
position : real;
code : integer;

begin
{ Open file variable }

Assign(FileVar, ‘motor’);

{ Force an error if the device is not
installed }

Reset(FileVar);
ReadLn(FileVar, instring);

{ Set up the axis for position tracking }
Rewrite(FileVar);
WriteLn(FileVar,’set_home:a’);

{ Move the motor }
Rewrite(FileVar);
WriteLn(FileVar,’move:a,2000’);

{ Read position from the mailbox }
Reset(FileVar);
ReadLn(FileVar, instring);

{ Print the position to the screen }
WriteLn(instring);

Programming Indexer LPT from PascalGETTING STARTED

Page 51User Guide

{ Convert the position string to a numeric
value }

Val(instring, position, code);

{ Print it to the screen }
WriteLn(position:0);

{ Send the motor home }
Rewrite(FileVar);
WriteLn(FileVar,’home:a’);

{ Read again and print to screen}
Reset(FileVar);
ReadLn(FileVar, instring);
WriteLn(instring);

{ Close device before leaving }
Close(FileVar);

end.

GETTING STARTEDProgramming Indexer LPT from Pascal

User GuidePage 52

Chapter 7

FEED RATE OVERRIDE

What Feed Rate Override Is
The feed rate override (FRO) feature adds the ability to smoothly
and continuously adjust motor speeds concurrently with motor
motion by means of an externally applied control voltage. It applies
to single and multiple axis motion, including contouring. FRO
applies universally to all motion timing, including starting speeds,
running speeds, acceleration and vshift.

One way to visualize the FRO feature is to consider an externally
applied voltage to establish a "set point" defining a percentage
faster or slower that motion shall occur with respect to the pro-
grammed motion rates. Whenever the set point changes, FRO tech-
nology tracks this percentage, making the actual motion align with
the desired overide setting.

The tranfer characteristic between voltages applied and percentage
override is configurable by means of the fro_low, ,fro_high,
fro_lowvolt and fro_highvolt registers (although the default values
are sufficient for most applications).

The FRO set point can also be offset under program control (using
the set_fro_offset command to change the fro_offset register). This
allows the application program to modify speed within a queued
contour “as if” it was being adjusted by an externally applied sig-
nal. The total amount of FRO applied to the set point is the combi-
nation of the amount recorded in the fro_offset register and that
applied by means of the external control voltage. The toal feed rate
override will never exceed the limits established by the fro_low and

What Feed Rate Override IsFEED RATE OVERRIDE

Page 53User Guide

the fro_high registers.

Software control over the FRO set point is always effective. It is
not disabled when the fro_enable register is "0". When the
fro_enable register is “0”, the set point established by the fro_offset
register is always relative to a FRO value of 100%.

When the fro_enable register contains a value of “1”, an externally
applied control voltage contributes to the FRO set point. The con-
trol voltage must be within the range of zero (0) to five (5) volts,
and can be generated by means of an external circuit or a simple
potentiometer.

Using an external circuit, feed rate can be dynamically changed to
implement low cost adaptive control.

A simple potentiometer easily implements a means for an operator
to vary the speed of motion with a control knob.

The Hardware Assist Module Supports FRO
The Hardware Assist Module (HAM) provides the necessary
interface to communicate the FRO control voltage to the software.
The HAM consists of a small module having a DB25 male con-

FEED RATE OVERRIDEThe Hardware Assist Module Supports FRO

User GuidePage 54

FRO INPUT VOLTAGE

fro_offset

0
0

1 2

FR
O
 P
ER
C
EN
T

50

150

100

200

fro
_lo
w
vo
lt

Volts
Units

3 4 5
256

fro_low

fro_high

fro
_h
ig
hv
ol
t

Figure 7-1

fr
o

_h
ig

h
vo

lt

fro_high

fr
o

_l
o

w
vo

lt

fro_offset

fro_low

F
R

O
 P

E
R

C
E

N
T

FRO INPUT VOLTAGE

Volts
Units

nector on one end, and a DB25 female connector on the other.

The DB25 male connector attaches to a parallel port dedicated for
use with Indexer LPT. On computers with multiple parallel ports,
Indexer LPT will automatically detect which port the HAM is
attached to. The base axis (X Group axis) that the HAM is detect-
ed on can be read by means of the Indexer LPT ham_axis? query.

(X Group and Y Group signals are shown in the chart on page 25).

Indexer LPT and companion products are supported by the HAM.
Reverse engineering the HAM violates your agreement to use the
software and invalidates your license.

All of the pins of the parallel port connecting to the HAM that may
be used for Indexer LPT functions are presented electrically to the
DB25 female connector on the far side of the HAM with the excep-
tion of pins 6, 7, 8 and 9 (the output signals from the Y Group
axis). All signals from the X Group axis can be used normally.

Limit switch inputs for the Y Group axis, consisting of pins 16 and
17, as well as the Auxiliary Input pin 13, feed straight through.
You can use pins 16 and 17 for the feed hold feature if you wish,
and use the Auxiliary Input as normal.

Pins 11 and 15 are dedicated to the FRO feature. Pin 11 accepts the
0-5 Volt FRO control voltage. Pin 15 provides a voltage source
capable of applying power to a 1K potentiometer.

Wiring

For potentiometer control, connect the wiper of the potentiometer
to pin 11. Connect the end of the potentiometer on the side that the
wiper moves towards when you want speed to increase to pin 15.
Connect the other end of the potentiometer to ground, located on
any of pins 18 to 25.

WiringFEED RATE OVERRIDE

Page 55User Guide

Figure 7-2

Activation
By default the FRO feature is disabled. You can enable FRO by
means of the set_fro_enable command. The command:

set_fro_enable:1

enables FRO. The command:

set_fro_enable:0

disables FRO.

Be careful NOT to enable FRO if a control voltage is not being
applied to the HAM, or if a potentiometer is not installed. An open
circuit on pin 11 will cause erratic speed variation when FRO is
enabled.

DO NOT ACTIVATE FEED RATE OVERRIDE IF A
POTENTIOMETER IS NOT CONNECTED, OR IF A
CONTROL VOLTAGE IS NOT APPLIED.

If you wish to designate the status that FRO will assume when the
software loads you may use the save_fro_enable command. This
command will preserve the current state of the fro_enable register
when the computer is shut down, and restore it the next time
Indexer LPT loads.

Resolution
Indexer LPT is capable of resolving the control signal to up to 100
variations of speed, corresponding to the voltage span from
fro_lowvolt to fro_highvolt. Resolution can be changed by means of
the set_fro_res command. The default and recommended resolution
is 50. You can save the current resolution to non-volatile memory
by means of the save_fro_res command.

Voltage Span
Voltage span adjustment is useful for calibrating the position of a
control knob to a calibrated dial. The unit of value used is 5/256
volts. In other words, a value of 256 corresponds to 5 volts. You
may use the set_fro_highvolt command to set the upper (fastest)
position of the dial. Use the set_fro_lowvolt command to set the
lower (slowest) position of the dial. The default value for the
fro_highvolt register is 256, representing 256 units of 5/256 Volts,
or 5 Volts The default value for fro_lowvolt is 0, representing 0
Volts.

Voltage to Speed Transfer Ratio
The amount of FRO speed variation can be modified by the

FEED RATE OVERRIDEVoltage to Speed Transfer Ratio

User GuidePage 56

set_fro_low and set_fro_high commands. The fro_low value corre-
sponds to the percentage of nominal speed when the control volt-
age is at the fro_lowvolt limit. It also represents the lowest percent-
age of feed rate override that can be applied.

The fro_high value corresponds to the percentage of nominal speed
when the control voltage is at the fro_highvolt limit. It also repre-
sents the highest percentage of feed rate override that can be
applied.

Default values for the fro_low and the fro_high registers are 30 and
130 respectively.

For example, in the default configuration where the fro_lowvolt and
fro_highvolt registers are 0 and 256 respectfully, when the control
voltage is 5, the speed of motion will be increased to 130 percent
of the programmed value. When the control voltage is 0, the speed
of motion will be decreased to 30 percent of the programmed
motion. With the (default) resolution of 50, 50 different speeds can
be realized depending on the position of the potentiometer, or the
level of the control voltage.

The FRO feature was designed to vary speeds within the normal
operating range of most control applications. It is NOT meant to
slow speeds to a stop. Use the feed hold feature for stopping
motion.

Physical Range Limits
Caution should be exercised to avoid over stress of motion con-
trolled components. When selecting allowable limits for speed,
acceleration and vshift, account for changes that various FRO set-
tings will introduce.

.

Physical Range LimitsFEED RATE OVERRIDE

Page 57User Guide

FEED RATE OVERRIDE

User GuidePage 58

Chapter 8

QUEUE PROCESSING

What Queue Processing Is
It is often desirable, especially in machine tool control applications,
for motion to proceed from one command into the next command
without decelerating to a stop between each command. Indexer
LPT’s queue processing feature accommodates this task. “Look-
ahead” processing not only over-rides deceleration between com-
mands, but also anticipates stresses at the transition points, and
adjusts axis speeds accordingly.

The commands which are most used in queue processing are
q_begin, q_end, and q_go. The following command sequence
demonstrates loading and executing a command queue in a simple
example:

q_begin
feed:a,4000
arc_to_angle:ccw,a,0,b,1000,90,c,1000
feed:a,1000,b,4500,c,3100
feed:a,200,b,1150,c,500
feed:a,100,c,300
q_end
q_go

The q_begin command instructs Indexer LPT to begin recording
commands into the queue buffer. The q_end command terminates

What Queue Processing IsQUEUE PROCESSING

Page 59User Guide

the recording process. Motion begins when the q_go command is
executed.

After the q_end command, but before the q_go command, you may
execute Indexer LPT motion commands individually. This feature
allows the application program to perform the relatively time con-
suming task of loading the queue in a separate operation. After the
queue is loaded, a machine component can be moved into into posi-
tion, and the queue can be executed without the calculation dwell
associated with loading the queue. This feature is most used in cut-
ting tools. If the tool were in contact with the work when the queue
was being loaded a burn mark may result. Instead, the queue can be
loaded first, then the tool can be moved into the work, and the
queue executed (virtually) immediately with the q_go command.

Contouring
A smooth contour can be constructed by queuing commands.
Indexer LPT accelerates into the contour through the initial com-
mands in the queue, and decelerates to a controlled stop at the end
of the queue.

When progressing from command to command, some amount of
instantaneous shift in step rate is necessary in order for the motion
to follow its pre-defined path. In an ideal mathematical model, an
instantaneous change in velocity is impossible, since it would
require an infinite force, or zero mass. However, when dealing with
step motors, “instantaneous” actually means “within the time peri-
od of one step”. By design, step motors will withstand certain
amounts of instantaneous shift in velocity. When Indexer LPT
begins motion from rest, using for example the feed command, the
step motor velocity “instantaneously” shifts from zero steps per
second to the value in the feed_lowspeed register. When executing
commands from the queue buffer, an instantaneous shift in step rate
is generated while the motors are moving from one segment to
another segment of a complex path.

When closely traversing a smooth contour by means of small
changes in direction, relatively small instantaneous changes in step
rate occur when control is passed from one feed command to the
next. The greater the change in direction and the greater the speed,
the greater the instantaneous shift in step rate. If the instantaneous
shift is allowed to be sufficiently large, an axis may be over-
stressed and fly out of step. When processing a queue of com-
mands, Indexer LPT determines the velocity shift which can be
withstood by each axis. Indexer LPT automatically adjusts actual
velocities so as not to over-stress any axis during the traversal of a
contour.

QUEUE PROCESSINGContouring

User GuidePage 60

Velocity Shift
Consider the case of a direction reversal of a single axis, as demon-
strated in the following command sequence:

q_begin
feed:a,1000
feed:a,-1000
q_end
q_go

In this example Indexer LPT decelerates the “a” axis to the
feed_lowspeed setting at the completion of the “feed:a,1000”
command, and immediately executes the “feed:a,-1000” com-
mand starting at feed_lowspeed velocity. Since the axis is reversing
in direction, the instantaneous shift in velocity between commands
is TWICE the value set up in the feed_lowspeed registers.
Consequently, if queue processing is being used, and if the possi-
bility of direction reversal exists, the value of the feed_lowspeed
register must be equal to or less than ONE HALF the instantaneous
velocity shift which can be withstood from an axis at rest. The par-
ticular value, of course, is governed by the mechanical dynamics of
the system and the power available to the motor.

In another example, consider the situation which occurs when con-
trol passes from one feed command to another in multiple axes:

q_begin
feed:a,1000,b,1000
feed:a,8660,b,5000
q_end
q_go

In this example, the first feed command represents a motion vector
which is directed at a 45 degree angle off the “a” axis. Assume that
the feed rate (vector velocity) at the completion of the first feed
command is 1000 steps per second. Each axis, therefore, is moving
at a rate of 707 steps per second. The second feed command repre-
sents a linear motion which is directed 30 degrees off the “a” axis.
In order to maintain this new path after leaving the first feed com-
mand, the “a” axis must instantaneously increase in velocity by 159
steps per second to 866 steps per second, and the “b” must decrease
in velocity by 207 steps per second to 500 steps per second. This
shift in velocity is necessary for the step motors to follow the path
which is defined.

Velocity ShiftQUEUE PROCESSING

Page 61User Guide

The instantaneous vector velocity at the transition point affects the
magnitude of the velocity shift for each axis. It follows that if the
magnitude of the vector velocity were ten times as great, the tran-
sitional shift in velocity for each axis would increase by a factor of
ten. In this example, if the vector velocity at the completion of the
first feed command were 10000 steps per second, a velocity shift of
1590 steps per second on the “a” axis and negative 2070 steps per
second on the “b” axis would be necessary.

The angle between the one path of motion and the following path
of motion also affects the magnitude of the velocity shift. The
greater the angle, the greater the velocity shift must be.

By monitoring both velocity and vector angle, Indexer LPT regu-
lates velocity throughout the contour to avoid excessive velocity
shift between commands.

Adjusting Velocity Shift
Indexer LPT maintains a strategy for determining the acceptable
velocity shift at the range of velocities from feed_lowspeed to
feed_highspeed. Indexer LPT processes the queue of commands
so that the acceptable velocity shift will not be exceeded during the
execution of the queue.

As previously mentioned, at the starting velocity, each axis must be
able to withstand a shift in frequency of two times the initial veloc-
ity (feed_lowspeed). However, since the torque available from a
stepper motor generally decreases with velocity, the motors will
typically not be able to withstand the same velocity shift at elevat-
ed velocities. The amount of velocity shift which Indexer LPT will
permit at any given velocity is governed (in part) by the value
stored in the vshift register.

When an axis is operating at feed_highspeed velocity, the amount
of velocity shift which is allowed is at its minimum, and is two
times the value in the vshift register. The amount of allowable
velocity shift is at its maximum at or below feed_lowspeed veloci-
ty. At or below feed_lowspeed velocity, the amount of allowable
velocity shift is two times the value of the feed_lowspeed register.
The amount of allowable velocity shift at intermediate velocities is
proportionally scaled between the maximum allowable (at
feed_lowspeed) and the minimum allowable (at feed_highspeed).

In the default configuration, Indexer LPT selects a minimal value
for vshift based upon the values of the feed_highspeed,
feed_lowspeed, and feed_accel registers. The value of vshift may be
changed by means of the set_vshift command. The vshift register
will not accept values which exceed the value of the feed_lowspeed
register.

QUEUE PROCESSINGAdjusting Velocity Shift

User GuidePage 62

It should also be noted that whenever the feed_highspeed,
feed_lowspeed, or feed_accel registers are changed, a new default
value for vshift is calculated and installed. Be careful not to set the
vshift register before changing the values of these other registers.
The value in the vshift register will be over-written.

The vshift register may be written to in whole units of steps per sec-
ond. The value of the vshift register may be read by means of the
vshift? command. Depending upon the values of the
feed_lowspeed, feed_highspeed, and feed_accel registers, the
default vshift value may be set to a fractional unit less than one. The
vshift? command will read a fractional unit as zero. The following
command may be used to set the vshift register to its default value:

set_vshift:default

Generally speaking, a larger value in the vshift register creates a
reduced tendency for Indexer LPT to decelerate when approach-
ing a transition point. The optimal value for vshift depends upon the
torque which is available from the motors at operational speeds. If
for example, the torque of the motors drops off substantially at the
feed_highspeed velocity, then the value for vshift should be small to
avoid over-stressing the axes during sharp transitions. If however,
there still remains substantial torque at this velocity, a higher value
in the vshift register may be of benefit. The contour will be more
rapidly traversed and a more consistent vector velocity will be
maintained.

Some systems operate at sufficiently slow speeds (or at sufficiently
high torque) so that the same amount of velocity shift can be toler-
ated at all speeds. In such a case you may wish to set the vshift reg-
ister to the same value as the feed_lowspeed register. You cannot set
the vshift register to a value higher than the value of the
feed_lowspeed register.

It must be emphasized the amount of “acceptable” velocity shift
mentioned thus far is the amount of velocity shift which Indexer
LPT determines acceptable according to its contouring strategy.
The actual velocity shift which can be physically sustained depends
on factors including friction, inertia, and motor/drive characteris-
tics. The system designer must therefore set up the feed_lowspeed,
feed_highspeed, feed_accel, and vshift registers so that velocity
shifts determined “acceptable” by Indexer LPT fall within the
physical limitations of the system.

Memory Management
When the control portion of Indexer LPT loads it sets aside a por-
tion of system memory for use by the queue buffer. The amount of
memory which it attempts to allocate is stored in the system
Registry as either the default amount set up during installation, or

Memory ManagementQUEUE PROCESSING

Page 63User Guide

the result of the last set_q_mem command. The set_q_mem com-
mand writes to the system Registry. Consequently, Indexer LPT
will attempt to take out the same amount of memory from Windows
the next time Indexer LPT is run, even if the computer had pow-
ered down.

Queue buffer memory becomes occupied as commands are entered
into the queue. When the queue is executed by means of a q_go
command, or if it is emptied by means of a q_reset command, the
entire amount of allocated memory is once more made available for
more commands.

The q_empty? command is a convenient means of determining if
the queue is empty at any particular time. The q_mem? command
reports the amount of memory available for use in the queue buffer.
If the queue is empty, the q_mem? command reports the size of the
queue buffer.

The command_mem? command provides a means of determining
how much memory is occupied by a specific command. Consider
the following query:

command_mem?:feed:a,100,b,-300

As a result, Indexer LPT will fill the mailbox with an ASCII
numeric string designating the amount of memory which this com-
mand would occupy if loaded into the queue buffer.

The amount of memory required by circular interpolation com-
mands, such as circle, arc_to_angle, and arc_to_point depend upon
how many segments Indexer LPT uses to approximate the geom-
etry. Consequently, the memory demand for these commands
depends upon the angle that is subtended and the value of the arc-
seg_degrees register.

Flow Control
The process of transferring commands to Indexer LPT in an order-
ly and appropriate manner is called “flow control”. Application
programs, such as those available from Ability Systems, hide the
complexity of flow control from the end user. However, if you are
writing application programs you must understand the logic of flow
control in order to obtain optimim performance from the advanced
contouring features of Indexer LPT.

The simplest implementation of flow control is the use of the DOS
“copy” command. Consider the use of the following DOS com-
mand:

C>copy <command filename> motor

In this case, DOS’s own COMMAND.COM routine reads the

QUEUE PROCESSINGFlow Control

User GuidePage 64

command file and sends it to Indexer LPT a line at a time.
Although very effective, this technique is obviously lacking in fea-
tures. For one thing, it may be desirable for the operator to view the
Indexer LPT commands on the screen as they are being passed to
the device driver. In order to achieve this, a program can be written
in BASIC, C, Pascal, or other language, which reads the input file
a line at a time, prints the command to the screen, then sends the
command to Indexer LPT. Such a program accomplishes a very
simple form of flow control with an added display feature. Similar
to DOS’s “COPY”, commands are sent to Indexer LPT exactly as
they appear in the command file. Applications which require queue
processing, however, may require the flow control routine to
assume additional responsibilities.

Since the queue is not infinitely deep, it is possible to attempt to
load the queue buffer with more commands than it can accommo-
date. If an attempt is made to enter a command into the queue, and
insufficient memory remains to accept that command, Indexer
LPT ignores the command and places the following message in the
mailbox:

error,queue full

This is known as over-writing the queue buffer. Of course it is
important not to lose commands in this manner!

One method of avoiding this condition is to provide your system
with sufficient memory, and use set_q_mem to allocate a sufficient
amount of memory to the queue buffer for the most complex con-
tour that you would reasonably expect to service.

In some applications it may be necessary or desirable for the flow
control program to monitor the amount of the memory remaining in
the queue buffer as it queues each command. If the flow control
routine detects that the buffer is full, it may generate an appropri-
ate handling sequence.

The system designer must determine which method or combination
of methods is most appropriate to the particular application.
Examples of some flow control routines are included on the distri-
bution diskette.

Indexer LPT provides a convenient means for the flow control
routine to monitor the queue buffer. The memory requirement of
each queuable command can be determined by means of the com-
mand_mem? query command. In response to the q_begin com-
mand, Indexer LPT reports the amount of memory remaining in
the queue buffer. Indexer LPT similarly reports the remaining
buffer memory as subsequent commands are queued. The flow con-
trol routine can thereby determine if room exists in the buffer
before issuing each command.

Flow ControlQUEUE PROCESSING

Page 65User Guide

What does the flow control routine do when it determines that the
next command will not fit in the queue? This depends upon the par-
ticular application and/or what type of operation is involved.

One of the most elementary things which the flow control routine
can do is to immediately execute the queue to free up the queue
buffer. To accomplish this, the flow control routine issues a q_end
command followed by a q_go. This sequence processes the current
queue, executing instructions up to and including the last com-
mand. When execution of the queued commands is complete and
the queue buffer is again ready to receive more commands, the flow
control program issues a q_begin command and proceeds to read
subsequent commands from the command file and write them into
the queue. When the last command is read and queued, the flow
control program issues a final q_end and q_go.

This strategy will avoid losing commands due to buffer over-write.
However, recall that the principle reason queue processing exists is
to uniformly control velocity across the path of a contour. To stop
at an arbitrary point and delay for the additional time necessary to
load the queue defeats the purpose of queue processing. The fol-
lowing example shows how this apparent anomaly is overcome by
means of a flow control strategy.

Consider as an example an operation where a contour is being tra-
versed using “a” and “b” axes, and a tool is lowered into the work
with the “c” axis. Queue processing is being used to improve the
quality of the process by providing a more uniform vector speed
across the contour. However, if the tool is engaged in the work and
not advancing it risks leaving a dwell mark. In this example it is
acceptable to withdraw the tool from the work, process the queue,
re-engage the tool into the work, then execute the queue. To accom-
modate this strategy, Indexer LPT allows non-queued commands
to be executed between the q_end command and the ensuing queue
execution (q_go). The listing below demonstrates a sequence of
instructions as they may be received by Indexer LPT from a flow
control routine. It is important to notice that the dwell time neces-
sary to load the queue occurs when the tool is withdrawn.

Begin queuing with cutter withdrawn
q_begin
.
Queue-ed commands - define the contour
.
q_end
Engage the cutter into the work
feed:c,-400
Execute the queue - smooth contouring

QUEUE PROCESSINGFlow Control

User GuidePage 66

#operation
q_go
Withdraw the cutter from the work
move:c,400
Begin queuing with cutter withdrawn
q_begin

In this application, the flow control routine queues commands with
the cutter withdrawn and monitors the memory available as each
command is read from the command file and queued. When the
buffer is full, the flow control routine generates the q_end com-
mand to process the queue. The flow control routine then generates:

feed:c,-400
q_go
feed:c,400
q_begin.

Thus by monitoring the amount of memory in the queue buffer as
commands are queued, a flow control program can avoid over-writ-
ing the queue while implementing a sequence of operations which
virtually eliminates cutting tool dwell.

The best strategy which is adopted in flow control depends on the
particular application. The strategy which you decide on for your
system is likely to involve a combination of the principles which
have been discussed. Command sequences and flow control rou-
tines are provided on the distribution diskette to demonstrate these
principles and to assist you in constructing your own flow manage-
ment software.

Safety Concerns
In motion control systems where human intervention can be haz-
ardous, it is important to protect the operator against unexpected
motion. When working with contours that load a great number of
segments into the queue buffer, the time which it takes to load the
queue may give the appearance that the machine is dormant. It is
important in these cases to provide some means by which the oper-
ator is alerted that the computer is processing, and that machine
motion is impending. The method that is used depends upon the
particular machine. For example, for some machines a notification
placed on the computer screen may be sufficient. For other
machines, an annotation light and buzzer located in physical prox-
imity to the hazardous area may be necessary. Other machines may
require shield and lockout mechanisms, physically preventing oper-

Safety ConcernsQUEUE PROCESSING

Page 67User Guide

ator intervention until an operation is complete. The method which
is used is up to the machine designer. Safety should be your pri-
mary concern.

Speed Control
It is possible to change the speed of the contouring motion within
the queue under software control by means of features provided in
the feed rate override (FRO) control. (Refer to the chapter entitled
Feed Rate Override).

Specifically, the set_fro_offset command is acceptible for use with-
in the queue buffer. Its use in continuous control over contouring
speed can be illustrated in the following example.

This example demonstrates a smooth contour into and out of an arc.
Once entering into the arc, motion decelerates to 80% of the feed
rate. After leaving the arc, motion accelerates to resume at 100%.
(Please note that in this example a certain amount of additional
slowing might “naturally” occur due to the effect of vshift).

q_begin
feed:a,10000
set_fro_offset:-20
arc_to_angle:ccw,a,0,b,4000,90
set_fro_offset:0
feed:b,10000
q_end
q_go

The default value of the fro_offset register is 0. Consequently, the
first feed command executes at 100% of the setup parameters
(feed_lowspeed, feed_highspeed, feed_accl and vshift). As soon as
the first set_fro_offset command is executed within the queue, the
FRO set point is changed to 100%-20%= 80%. Motion timing
tracks the FRO set point, decelerating to 80% of the established
feed rate as it enters the arc. The second and following set_fro_off-
set command restores the fro_offset register to its default value,
causing subsequent motion to proceed at 100%.

Please also note that if the hardware portion of FRO has been
enabled, the effects of FRO hardware combine as per the diagram
in Figure 7-1.

“On the Fly” Digital Output
Digital output commands winding_power, reduced_current and bit
can be executed from within the queue buffer while motors are in

QUEUE PROCESSING“On the Fly” Digital Output

User GuidePage 68

motion.

This feature is especially useful in machines that must activate a
particular opearation at a point where motion occurs at predictable
rate, having completed the acceleration cycle.

Consider, for example, a machine that uses motion control to spray
a coating along a path on a workpiece at a carefully controlled den-
sity. Since the speed of the spray nozzle affects the density of the
coating, it is important to activate the nozzle at a particular point
after the motors have accelerated to vector rate, and to deactivate
the nozzle at a point before decelerating to a stop. To accomplish
this, the nozzle must be activated while the motors are moving,
which is to say, “on the fly”.

During a queue loading sequence, one of the digital output com-
mands can be "attached" to the end of each motion command. For
example, consider the sequence:

q_begin
feed:a:100
reduced_curent:b,0
feed:a,250
q_end
q_go

In this example the reduced_current command is attached to the
end of the first feed command. When the queue is executed by
means of the q_go commmand, the reduced_current command will
be executed after the first feed command. Motion control is contin-
uously processed from feed command to feed command and
smoothness of motion is not affected by the introduction of the
reduced_current command.

After the queue buffer is opened by means of q_begin, if a motion
command does not exist in the queue buffer, the digital output com-
mand will be processed immediately. For example, in the sequence:

q_begin
reduced_current:b,0
feed:a,100
feed:b,200
q_end
q_go

... the reduced_current command will not be suspended until the

“On the Fly” Digital OutputQUEUE PROCESSING

Page 69User Guide

queue is executed via q_go. In this case the reduced_curent com-
mand will be executed immediately.

Only one digital output command can be attached to the end of a
motion command. If consecutive digital output commands are
attached to any motion command, only the last one will have effect.
For example, in the sequence:

q_begin
feed:a,200,b,100
reduced_current:b,0
winding_power:a,1
feed:b,200
q_end
q_go

... only the winding_power command will be attached to the end of
the first feed command. The reduced_current command will have
no effect.

QUEUE PROCESSING“On the Fly” Digital Output

User GuidePage 70

Chapter 9

SWITCH SCANNING & JOYSTICK

The Scanning Feature
Switch scanning is a powerful feature which enables a relatively
large number of switches to be sensed using a limited number of
inputs and outputs. The procedure comprises a few simple steps.
The scanning input line is "pulled high", that is, it is connected to
5 Volts through a series resistor. (The limit switch inputs satisfy this
criteria internally). When an open circuit condition exists on a
scanning input line, the input senses a 5 volt condition.

The scanning output lines are normally high (5 Volts). Indexer
LPT accomplishes scanning in the following manner:

1) A specified output line is momentarily brought low (0 Volts).

2) During the time period when the specified output line is low, the
specified input line is sensed. The result is placed in the mailbox: 1
if the input is low (switch closed), 0 if the input is high (open cir-
cuit).

3) The output line which was momentarily brought low is returned
to its normal high condition.

If the circuit connecting the input line is open, the input line will be
high when sensed. However, if the switch which connects the spec-
ified output line to the input line is closed during the time period
when the output line is low, the input line will be sensed to be low.
When Indexer LPT reads a low signal on the input line during the
scan cycle, it concludes that the connection has been made by
means of a switch closure.

The Scanning FeatureSWITCH SCANNING & JOYSTICK

Page 73User Guide

It is important to note that only one of the scanning outputs can be
low at any given time. Note also that the outputs which are high
"appear" as an open circuit to the input. The particular switch clo-
sure is determined by reading the input when a known output is in
the low condition. The term "scanning" applies to the practice of
testing for switch closures by performing this operation sequential-
ly on each of a number of output lines.

The diagram in Figure 9-1 helps to show how four switches can be
sensed by scanning four outputs into one input. All outputs are nor-
mally high. An open circuit on a limit switch input reads high, since
it is internally pulled up.

(Caution: Since on most printer cards the auxiliary input is a float-
ing TTL input, it cannot be relied upon to read "high" during a open
circuit condition without a pull up resistor. To use the auxiliary
input as a scanning input, connect the line to 5 volts through of a
4.7K ohm resistor).

The scanning procedure is summarized as follows:

The procedure begins by holding Output 0 low and reading the
Input. If the Input is low, then it is concluded that switch S1 is
closed. After the input is read, Output 0 is returned to its normal
high condition.

Next Output 1 is held low and the Input is read. If the Input is
low, then it is concluded that switch S2 is closed. Output 1 is then
returned to its normal high condition.

This procedure is repeated to scan S3 using Output 2, and S4 using
Output 3.

Notice that the circuit in Figure 9-1 can only be used for scanning
if only one switch is closed at any given time. If more than one
switch is closed, an unacceptable short circuit condition will exist
between the scanning outputs which are connected to the simulta-
neously closed switches. In some applications, it is possible to

SWITCH SCANNING & JOYSTICKThe Scanning Feature

User GuidePage 74

Output 0

Output 1

Output 2

Output 3 Input

Figure 9-1

physically prevent two switches from simultaneously closing. In
other applications, it cannot be prevented.

A diode in series with each switch can be used to isolate each of the
outputs, thereby allowing the condition of simultaneous switch clo-
sures. This technique takes advantage of the fact that current flows
from the input into the output when the output is low. The diode
prevents current from passing from the high outputs into the output
which is being scanned low, essentially making the high outputs
behave as open circuits regardless of the condition of their respec-
tive switches.

The diagram in Figure 9-2 shows a circuit which uses diodes to
isolate the outputs in a scanning circuit. Figure 9-3 shows the
schematic representation of the diode next to a picture of the phys-
ical part. Small germanium diodes such as the 1N34A are recom-
mended. These are available through a number of electronic sup-
pliers, including Radio Shack (Radio Shack part number for a pack
of ten is 276-1123). They are small, cylindrical in shape and about
3/16" long. The leads are usually .022" in diameter and extend
about 1". The cathode end is marked by a band which is painted or
etched around the body of the part.

The diagram in Figure 9-4 shows how eight switches can be wired
for scanning using four outputs and two inputs. Additional switch-

The Scanning FeatureSWITCH SCANNING & JOYSTICK

Page 75User Guide

Output 0

Output 1

Output 2

Output 3 Input

Figure 9-2

Figure 9-3

Physical Part

Schematic Symbol

Anode Cathode

es can be scanned by increasing the number of scanning outputs or
by increasing the number of inputs. The number of switches which
can be scanned is determined by multiplying the number of scan-
ning outputs by the number of available inputs.

By setting the mode of an axis using the axis command, Indexer
LPT allows the four outputs associated with an axis to be allocat-
ed for special use in scanning. When scanning joystick switches,
the limit switch inputs associated with the scanning axis are used as
inputs. However, when using the scan command to sense discrete
switch closure, any of the available inputs may be used as the scan-
ning input.

The Joystick Feature
The joystick feature allows an axis to be set up and used for joy-
stick control. The wiring diagram in Figure 9-5 shows a typical full
joystick configuration. The wiring diagram in Figure 9-6 shows a
scaled down (minimum features) joystick implementation. The pin
numbers used for making the actual connections to the printer con-
nector can be determined by reference to the axis addressing chart
in the chapter entitled HARDWARE REQUIREMENTS.

It should be noted that in configuration options where switches are
momentary action, and more than one switch physically cannot be
closed simultaneously, diodes are not required

SWITCH SCANNING & JOYSTICKThe Joystick Feature

User GuidePage 76

Output 0

Output 1

Output 2

Output 3 Input 1

Input 2

Figure 9-4

Joystick Switch Assignments

S1 - S4 Joystick Switches
(momentary action normally open switches) These switches are
used to actually control motor movement. Switches S1 and S4 con-
trol one axis. Switches S2 and S3 control another. When active,
switches S1 and S2 always effect motion in the (+) direction.
Switches S3 and S4 are used to activate motion in the (-) direction.
The particular axes which these switches control is determined by
the joystick_input setup command and the status of switch S7.

These switches may be part of a single joystick switch, with a com-
mon connection to the appropriate high limit switch input.

Another useful configuration is to locate four momentary push-but-
ton switches in a diamond shape pattern on a control pattern.

S5 Acceleration Select Switch
(toggle switch) When this switch is open, the axis which is being
moved by the joystick will be governed by the values set up in its
lowspeed, highspeed and acceleration registers. When this switch
is closed, joystick controlled motion will occur at a constant
(instantaneous) speed according to the value set up in its jogspeed

Joystick Switch AssignmentsSWITCH SCANNING & JOYSTICK

Page 77User Guide

step (6)[2]

X-Group Pin Number - []
Y Group Pin Number - ()

reduced current (8)[4]

all windings off (9)[5]

direction (7)[3]

high
limit

switch
input

low
limit

switch
input

[14](17)

[1](16)

up (+)

right (+)

left (-)

down (-)

accel/instantaneous

continuous/nudge

axis select 0/1

remain/exit
Can be wired to either X-Group or Y-Group

Wiring for Joystick Switches and Options

Figure 9-5

1N34A

register.

Accelerated motion, obtained when this switch is open, is useful for
rapid positioning. Constant speed motion, obtained when this
switch is closed, is helpful in accurate positioning.

S6 Extent Select Switch
(toggle switch) The setting of this switch determines if the axis
being controlled is to send out a continuous stream of pulses, or if
it is to send out a burst of one or more pulses. (The actual number
of "burst" pulses is user defined by means of the joystick_input set-
up command). When this switch is open a joystick switch closure
(S1-S4) will maintain motion as long as the joystick switch remains
closed. When this switch is closed, a joystick switch closure will
cause motion by means of a burst of pulses. If the joystick switch
remains closed after the .5 second delay, another burst of pulses is
issued. Motion is immediately terminated when the joystick switch
contact opens. Control options obtained using this switch are use-
ful in very accurate positioning applications where the user can
only move the axis close to the desired position with continuous
motion. Final positioning is accomplished by"nudging" the motor
to its final position a step or a few steps at a time.

S7 Axes Select Switch
(toggle switch) Up to four axes can be controlled by means of a sin-
gle joystick. This switch selects which axes (in sets of two) the joy-
stick switches are to control. The second argument in the joy-
stick_input command associates the axes which are to be controlled
with the position of this switch. A value of 0 in the second argu-
ment of the joystick_input command defines the behavior of the
joystick switches (S1-S4) when S7 is open. A value of 1 in the sec-

SWITCH SCANNING & JOYSTICKJoystick Switch Assignments

User GuidePage 78

step (6)[2]

reduced current (8)[4]

all windings off (9)[5]

direction (7)[3]

high
limit

switch
input[14](17)

[1](16)

up (+)

right (+)

left (-)

down (-)

remain/exit

low
limit

switch
input

Wiring for Joystick Without Options

Figure 9-6

ond argument of the joystick_input command defines the behavior
of the joystick

Another way to understand the function of S7 is to think of it as
selecting one of two joystick_input setups. When the switch S7 is
open, the 0 setup is selected. When the switch S7 is closed, the 1
setup is selected. In one application S7 can be used to select
between two sets of two axes, giving the joystick switches control
over four independent axes.

In another application, the same two axes can be defined by the 0
and 1 joystick_input setup, yet with different values for the number
of burst pulses. In this application, S7 is essentially being used to
select the resolution of the burst mode.

S8 Exit Switch
(momentary action normally open switch) This switch enables the
user to exit the joystick control mode. When the joystick_go com-
mand is issued, Indexer LPT will continually scan switches S1
through S8. A switch closure on S8 will cause Indexer LPT to dis-
continue joystick scanning and return to the calling program.

It should be noted that the joystick control switches and switch S8
are the only additional switches required for joystick operation. If
switches S5, S6, and S7 are eliminated, the joystick feature will
function as if these switches were installed but left in the open posi-
tion.

Software Setup

"Quick Start" Setup
Once the hardware is configured, setting up Indexer LPT for joy-
stick control is a relatively simple matter. The easiest way to under-
stand the software setup is by means of example.

Consider a motion system where the "e" axis is to be used for joy-
stick switch scanning. Axes "a" and "b" are to be controlled by the
joystick when switch S7 is open. Axes "c" and "d" are to be con-
trolled by the joystick when switch S7 is closed. When the joystick
is configured to "nudge" by closing S6, the desired number of burst
steps on all axes is to be 10.

The complete software setup is as follows:
axis:e,2
joystick_input:e,0,a,10,b,10
joystick_input:e,1,c,10,d,10

Software SetupSWITCH SCANNING & JOYSTICK

Page 79User Guide

To activate the joystick command mode, the following command is
issued:

joystick_go

To leave the joystick mode, close the contacts of switch S8. (Note
that the ONLY way which Indexer LPT uses to leave the joystick
command mode is by means of a closed circuit through switch S8.
Therefore, make sure that this switch wiring is installed before try-
ing the joystick_go command).

Since the "e" axis is to be used for a scanning purpose, the mode of
that axis must first be changed by issuing the following "axis" setup
command:

axis:e,2

The argument 2 is used to designate the scanning mode.

Next, using the joystick_input command the joystick switch
response is defined for the condition where selector switch S7 is
open.

joystick_input:e,0,a,10,b,10

The first argument, "e", specifies that the "e" axis is to be used as
the joystick input.

The second argument, 0, specifies that this joystick_input com-
mand is being used to define joystick control for the condition
where S7 is in the open position.

By calling out for the "a" axis in the next argument, this command
establishes control over the "a" axis using switches S1 and S4.
(Closing S1 will cause the "a" axis to move in the (+) direction.
Closing S2 will cause the "a" axis to move in the (-) direction).

The third argument ,10, specifies that a maximum of 10 pulses are
to be dispensed at a time when the "a" axis is being controlled and
S6 is closed.

The fourth argument, b, establishes control over the "b" axis by
switches S2 and S3. (Closing S2 will cause the "b" axis to move in
the (+) direction. Closing S3 will cause the "b" axis to move in the
(-) direction).

The last argument, 10 specifies that a maximum of 10 pulses are to
be dispensed at a time when the "b" axis is being controlled and S6
is closed.

If it is desired that the "b" axis is to be controlled by switches S1
and S4, and the "a" axis is to be controlled by switches S2 and S3,
then the following joystick_input command would be is used:

joystick_input:e,0,b,10,a,10

SWITCH SCANNING & JOYSTICKSoftware Setup

User GuidePage 80

The first axis called out in the joystick_input command is always
the axis which is controlled by scanning switches S1 and S4. The
second axis called for is always the axis which is controlled by
scanning switches S2 and S3.

All arguments in the joystick_input command must be present. If
only one axis is to be controlled, "none" should appear in the appro-
priate fields. For example, suppose in this setup only the "b" axis is
to be controlled by switches S1 and S4. The joystick_input com-
mand is constructed as follows:

joystick_input:e,0,b,10,none,none

Finally, the following command is used to define joystick operation
when switch S7 is in the closed position:

joystick_input:e,1,c,10,d,10

Notice that the "e" axis is again specified as the axis which is used
to scan the joystick switches. The second argument, 1, specifies
that the following arguments apply only when switch S7 is in the
closed position. The "c" axis is controlled by switches S1 and S4,
and will move 10 steps at a time when switch S6 is closed. The "d"
axis is controlled by switches S2 and S3, and will also move 10
steps at a time when switch S6 is closed.

Software SetupSWITCH SCANNING & JOYSTICK

Page 81User Guide

SWITCH SCANNING & JOYSTICK

User GuidePage 82

Chapter 10

SPECIAL CONSIDERATIONS

One of the advantages of Indexer LPT is that the computer itself
assumes the role of the indexer as it takes control of the translator
driver. As such, the user does not need to purchase separate index-
er electronics. The electronic signals necessary for motion control
are generated directly from the computer’s printer adapter. Since
Indexer LPT is a device driver, communication with the user pro-
gram is extremely fast and easy. There are, however, some inherent
limitations which require special considerations.

Computer Occupation
In order to maintain close control over rapidly applied signals,
Indexer LPT assumes total control over the computer while the
motor is in motion. In other words, when the user program instructs
a motor to move, it will wait until the motion is complete before
other processing can continue. Applications which must proceed
concurrently with stepper motor motion cannot use Indexer LPT.
For these applications, we recommend using separate indexer elec-
tronics which can operate independently from the computer’s CPU
(such as a second computer running Indexer LPT).

Computer Speed
The maximum stepping rate which can be obtained is determined
by the execution speed of the host computer. When Indexer LPT
first runs, it determines the speed of the computer. The maximum
stepping rate for your computer may be obtained by means of the
max_speed? command.

Computer SpeedSPECIAL CONSIDERATIONS

Page 83User Guide

Use of the System Clock
In normal operation, the computer is interrupted every 55 millisec-
onds by the system’s timer. This interrupt causes the system BIOS
to execute a small procedure that updates the memory locations
which track the date and time of day. In order to keep this interrupt
from interfering with the tightly controlled step timing, Indexer
LPT turns the interrupt off just before motion begins. After the
motion is finished, the interrupt is restored, and time tracking once
again commences.

Since the system timer is ineffective during motor movements,
some time-tracking is temporarily lost. Indexer LPT adjusts the
system time value after each motion command by reading the time
from the battery maintained real time clock, and adjusting the sys-
tem clock accordingly.

Unexpected Motion - Safety Considerations
If the motion controlled components of the machine you are
designing can potentially cause damage or injury to the operator,
you must build into your system appropriate safeguards. We feel
that these safeguards should include design considerations as well
as operator training.

If it is impossible or not feasible to safe-guard your system, do not
use this product and seek an alternative solution.

Almost all machinery can potentially cause personal injury, either
by means of airborne debris, hazardous cutting surfaces, or other
objects in motion. It is the responsibility of the machine designer to
incorporate features into the machine which avoid needlessly haz-
ardous conditions. We feel that unexpected motion of computer
controlled components comprises a needlessly hazardous condi-
tion.

As the reference implies, “unexpected motion” occurs when the
machine operator is taken by surprise, and a machine component
moves in a manner which is potentially hazardous. The machine
designer should take into consideration the following potential
sources of unexpected motion which are peculiar to PC controlled
machine tools.

Accidental Start
The use of a single keyboard keystroke or mouse snap presents a
safety hazard on certain types of equipment, since these actions can
easily occur inadvertently. Applications software written by Ability
Systems incorporate methods to reduce the chances of an acciden-
tal start, and are strongly suggested as guidelines for third party and
user written applications. These methods include the following

SPECIAL CONSIDERATIONSUnexpected Motion - Safety Considerations

User GuidePage 84

very strong suggestions for application programmers:

1) The application program should never allows motor movement
as a result of a single mouse snap. If a mouse snap must be used,
the menu or dialog that could cause a potentially hazardous motion
should time out in an appropriately short amount of time, so that the
cursor could never be dangerously poised over a selection that
could be inadvertently chosen by an accidental mouse snap.

2) If the keyboard is used to effect motion (keyboard “start”),
always require at least two keys to be simultaneously depressed.
Using only Enter to initiate a control sequence is especially dan-
gerous.

3) When monitoring external start switches, the application pro-
gram should always make sure that the switch is deactivated before
acknowledging that the switch is activated. This will assure that the
program does not “run away” if the start switch is accidentally acti-
vated when the program or menu is invoked. Applications that
require two start switches for safety can use this technique to make
sure that the second switch has not been defeated (permanently
activated by means of a weight or rubber band) for operator “con-
venience”.

Windows Multi-Tasking

Application programs that communicate to Indexer LPT run as a
Windows task. Typically, the task runs when the window that it is
operating from is in focus. Unless special provision is made, when
the user snaps over another window, and the task communicating
with Indexer LPT loses focus, communication to Indexer LPT is
suspended.

In most cases, suspending communication to Indexer LPT doesn’t
present a safety problem. In the case of a cutting tool, the tool may
be suspended in its present position and cause a burn mark. But this
seldom presents a threat to safety. However, a seriously dangerous
condition could present itself when the task is brought back into
focus, and communication with Indexer LPT resumes.

Consider how easy it would be to accidentally bring the application
into focus. If the screen cursor is accidentally positioned over the
dormant application and the mouse button is snapped, unexpected
motion may occur.

In some types of machines it may be acceptable to simply run the
application program in full screen mode, thereby reducing the pos-
sibility of accidentally switching out of, and later into the program.
In more hazardous machines, such as cutting tools, it is recom-
mended that your application run “System Modal”.

Application programs that run “System Modal” remain in focus

Unexpected Motion - Safety ConsiderationsSPECIAL CONSIDERATIONS

Page 85User Guide

until an orderly procedure is used to switch focus. During this
orderly procedure, your program can make sure that communica-
tion of motion commands to Indexer LPT is not pending.

Computational Delay for Complex Shapes

Even though the calculation dwell for each element of a complex
shape is very small, with the ability to handle extremely large and
complex geometric shapes (comprising the equivalent of thousands
of feed commands), it is possible to generate extensive cumulative
calculation delay times. A potentially hazardous condition occurs
when the delay time exceeds the time it would take for an operator
to inadvertently perceive that the machine is dormant, and interfere
with the operation in a manner that would endanger himself or oth-
ers, such as breaking down a setup fixture and placing his hand in
the path of a cutting tool. In machines where this type of occurrence
would compromise safety, appropriate safeguards must be designed
into the system.

One type of safeguard may be a simple warning light and corre-
sponding annotation (e.g. illuminated sign), which warns the oper-
ator that the machine is in operation, and that the machine may
begin motion at any time. The application program can control the
illumination of a light by means of the Indexer LPT digital output
lines, such as the ones entitled reduced current, or all windings off.

An audible buzzer can also be controlled while the machine is in
operation, which may be used in combination with a visible warn-
ing. Some machines may require a solenoid actuated latch, which
would physically prevent operator intervention until the program is
finished.

If you consider the operation very hazardous, you may design your
software so that motion never occurs automatically after any calcu-
lation dwell, and always requires an operator to manually actuate a
start condition. This procedure may be organized as follows: 1)
Load the queue buffer, starting the loading process with q_begin,
followed by the motion commands, in turn followed by q_end. This
portion of the procedure can potentially occupy the most time. 2)
Alert the operator that the machine is ready to commence motion.
3) Monitor a manually actuated start condition, such as one or two
pushbutton activated signal inputs.

SPECIAL CONSIDERATIONSUnexpected Motion - Safety Considerations

User GuidePage 86

Chapter 11

COMMANDS

ABORT?

Synopsis:
Return the logical condition of the abort switch.

Syntax:
abort?

Returns:
The mailbox contains an ASCII numeric character:

1 abort input is activated.

0 abort input is not activated.

The abort input is “activated” when there exists a circuit path to
ground on the low limit switch input pin (TTL low) of the axis des-
ignated to support the feed hold feature. The abort switch is “not
activated” when an open circuit condition exists on this pin (TTL
high).

If this command is issued and the feed hold feature has not been
enabled, the following message appears in the mailbox:

error, disabled

ABORT?COMMANDS

Page 87User Guide

Example:
Assume the “d” axis has been specified to support the feed hold fea-
ture by means of the following command sequence:

axis:d,1
feedhold_input:d,1

Also assume the low limit switch input, which now serves as the
abort input, is connected to an open circuit, and is therefore at TTL
high potential. In this example, this input is connected to a normal-
ly open switch circuit to ground. When the switch is open the abort
input is “de-activated”. The following command is issued:

abort?

As a result, the following ASCII character appears in the mailbox:

0

If the normally open switch in this example is closed, making a cir-
cuit path to ground, and thereby applying a TTL low potential to
the abort input pin, the following ASCII character appears in the
mailbox following the abort? command:

1

COMMANDSABORT?

User GuidePage 88

ACCEL?

Synopsis:
Read the contents of the accel register.

Syntax:
accel?:<axis>

Returns:
An ASCII numeric string designating the acceleration setting of the
selected axis in steps per second per second is placed in the mail-
box. This value is either the default value, or the value which was
set by the set_accel command.

Example:
Assume the value of the accel register for the “c” axis has been pre-
viously set to 495. To make this value available to be read from the
mailbox the following command is issued:

accel?:c

As a result, the following string of ASCII characters is placed in the
mailbox:

495

ACCEL?COMMANDS

Page 89User Guide

ARCSEG_DEGREES?

Synopsis:
Read the contents of the arcseg_degrees register.

Syntax:
arcseg_degrees?

Returns:
An ASCII numeric string designating the value of the
arcseg_degrees register appears in the mailbox.

Example:
Assume you have just set the value of the arcseg_degrees register
to 2 using the following command:

set_arcseg_degrees:2

After writing the following command to Indexer LPT:

arcseg_degrees?

the following message appears in the mailbox:

2

COMMANDSARCSEG_DEGREES?

User GuidePage 90

ARC_TO_ANGLE

Synopsis:
Traverse an arc to the designated angle around the specified center
point. Optionally traverse up to two additional axes proportionate-
ly to the subtended angle (helical interpolation).

Syntax:
arc_to_angle:<direction>,<axis>,

<steps to cp>,<axis>,<steps to cp>,
<angle>
[,<axis>,<steps>[,<axis>,<steps>]]

Only positive values for <angle> are accepted. Decimal angles
are permissible.

The direction in which the arc is drawn, clockwise or counter-
clockwise, is determined by the first command argument,
<direction>, and the order in which the axes appear on the
command line. “Clockwise” and “counterclockwise” are perceived
in three dimensional space by “wrapping” the first axis into the sec-
ond axis with the fingers of the right hand and viewing the circular
motion from the direction of the thumb.

<direction> Meaning

cw arc is subtended clockwise

ccw arc is subtended counterclockwise

<steps to cp> Signed magnitude of steps from the
present position to the position of the
center point

<angle> Whole number or decimal value of
angle to be subtended

<axis><steps> Optional arguments for helical
interpolation

Side Effects:
The arc or helix is approximated by linear segments. The segment
angle is determined by the arcseg_degrees register. Linear seg-
ments approximating the geometry are loaded into and executed
from the queue buffer. Motion along the paths of the interpolation
are governed by setup parameters in the feed_lowspeed, feed_high-
speed, and feed_accel registers.

If a queue load sequence has been initiated with the q_begin com-

ARC_TO_ANGLECOMMANDS

Page 91User Guide

mand, the segments comprising this command are appended to the
end of the queue buffer.

If a queue load sequence has not been initiated, then this command
automatically begins the queue load sequence, loads the interpola-
tion segments into the queue buffer, closes the sequence, and exe-
cutes the motion.

In certain applications this command must be used according to
user safety considerations, as demonstrated in the fourth example
below.

If a limit switch closure of a member axis is detected in an associ-
ated direction of movement, all motion is terminated and position
tracking on all axes associated with the motion is lost.

Returns:
An ASCII string representing the final position of each axis is
placed in the mailbox. Position information concerning each axis is
separated by a colon and appears in the order in which the axes are
called out on the command line.

Example:
To draw an arc in the counterclockwise direction using a center
point located minus 400 steps in the “a” direction and 500 steps in
the “b” direction, and subtending an angle of 35.5 degrees the fol-
lowing command is issued:

arc_to_angle:ccw,a,-400,b,500,35.5

Example:
Assume the present position of both “a” and “b” axes is zero and
the following command is issued.

COMMANDSARC_TO_ANGLE

User GuidePage 92

Destination Point

Center Point

500

-400 Start Point

35.5o

arc_to_angle:ccw,a,0,b,1000,270

After traversing this arc to an angle of 270 degrees, the following
message is available to be read in the mailbox:

-1000:1000

This message represents the final positions of the “a” and “b” axes
respectively. If in this example Indexer LPT senses a closure of the
high limit switch of the “b” axis while moving the “b” axis in the
positive direction, the arc is immediately terminated and the fol-
lowing message would appear in the mailbox:

limit,b,+

Position tracking on all axes associated with the motion would be
lost.

Example:
Consider the execution of the arc in the previous example with
additional simultaneous motion of the “c” and the “d” axis, where
the “c” axis travels 500 steps, and the “d” axis travels -300 steps.
The command to execute this motion is as follows:

arc_to_angle:ccw,a,0,b,1000,270,c,500,d,-300

Example: - Safety Consideration
Consider the following command which follows the path of a com-
plete circle 100 times in the “a” and “b” axes, while simultaneous-
ly advancing the “d” axis 10000 steps:

arc_to_angle:ccw,a,0,b,1000,36000,c,10000

Assuming the value of the register controlled by the arcseg_degrees
command were the default value of 5 degrees, Indexer LPT would
approximate the helix defined by this command with 36000/5 =
7,200 linear segments. Assuming your computer has enough avail-
able memory to handle this large an object, and assuming you allo-
cated enough memory in the queue buffer with the set_q_mem
command, Indexer LPT would execute this command immediate-
ly after loading the segments into the queue buffer.

This example demonstrates a command that may take considerable
time to process before motion commences. If the time it takes pres-
ents a safety hazard, where you think an operator may be endan-
gered by unexpected motion, your application program can split the
operation of calculation from the operation of executing the com-
mand using the q_begin, q_end, and q_go commands, as demon-
strated in the following sequence.

ARC_TO_ANGLECOMMANDS

Page 93User Guide

Open the look-ahead buffer
q_begin

Load without executing the motion
arc_to_angle:ccw,a,0,b,1000,36000,c,10000

Close the look-ahead buffer
q_end

Monitor a start switch before proceeding
[Application Program waits for an input]

Execute the command
q_go

COMMANDSARC_TO_ANGLE

User GuidePage 94

ARC_TO_POINT

Synopsis:
Traverse an arc defined by the present position, the specified center
point, and the specified destination point. Optionally traverse up to
two additional axes proportionately to the subtended angle (helical
interpolation).

Syntax:
arc_to_point:<direction>,

<axis>,<steps to cp>,
<steps to destination>,
<axis>,<steps to cp>,
<steps to destination>
[,<axis>,<steps>[,<axis>,<steps>]]

The direction in which the arc is drawn, clockwise or counter
clockwise, is determined by the first command argument and the
order in which the axes appear on the command line. “Clockwise”
and “counterclockwise” are perceived by “wrapping” the first axis
into the second axis with the fingers of the right hand and viewing
the circular motion from the direction of the thumb.

<direction> Meaning

cw arc is subtended clockwise

ccw arc is subtended counterclockwise

<steps to cp> Signed magnitude of steps from the
present position to the position of the
center point

<steps to destination> Signed magnitude of steps from
the present position to the final
destination point

<axis><steps> Optional arguments for helical
interpolation

Side Effects:
The arc is traversed along the specified axes according to motion
parameters set up in the feed_lowspeed, feed_highspeed, and
feed_accel registers. If a limit switch closure of a member axis is
detected in an associated direction of movement, all motion is ter-
minated and position tracking is lost.

ARC_TO_POINTCOMMANDS

Page 95User Guide

The radius of the arc is determined by the distance between the
present position and the center point. Indexer LPT traverses the
arc to the angle which is determined by a radial projection extend-
ing from the center point to the destination point. If the destination
point does not lie on the arc, Indexer LPT traverses the best
straight line from the completed angle to the destination point.

The arc or helix is approximated by linear segments. The segment
angle is determined by the arcseg_degrees register. Linear seg-
ments approximating the geometry are loaded into and executed
from the queue buffer.

If a queue load sequence has been initiated with the q_begin com-
mand, the segments comprising this command are appended to the
end of the queue buffer.

If a queue load sequence has not been initiated, then this command
automatically begins the queue load sequence, loads the interpola-
tion segments into the queue buffer, closes the sequence, and exe-
cutes the motion.

Returns:
An ASCII string representing the final position of each axis is
placed in the mailbox. Position information concerning each axis is
separated by a colon and appears in the order in which the axes are
called out on the command line.

Example:
Assume the present position of both “a” and “b” axes is zero and
the following command is issued:

arc_to_point:ccw,a,-900,800,b,600,1200

COMMANDSARC_TO_POINT

User GuidePage 96

Destination Point

Starting Point-900

600

Center Point

53.13o

800

1200

An arc with a radius of 1082 steps is traversed to an angle of 53.13
degrees. From the location on the arc of 53.13 degrees, Indexer
LPT moves to the destination point as if instructed by a feed com-
mand.

After completion, the following message appears in the mailbox:

800:1200

This message represents the positions of the “a” and “b” axes
respectively. If in this example Indexer LPT senses a closure of the
high limit switch of the “b” axis while moving the “b” axis in the
positive direction, the arc is immediately terminated and the fol-
lowing message would appear in the mailbox:

limit,b,+

Position tracking on all axes associated with the motion would be
lost.

Example
This example traverses an arc in the “a” and “b” axes, while simul-
taneously moving the “c” and “d” axes to their destination locations
along a trajectory that is proportional to the angle being subtended:

arc_to_point:ccw,a,0,100,b,100,100,c,50,d,75

If all axes started from the home position, the following message,
reporting the positions of the axes that were moved, appears in the
mailbox:

100:100:50:75

ARC_TO_POINTCOMMANDS

Page 97User Guide

AUX_INPUT?

Synopsis:
Determine the logic level of the auxiliary input signal lines.

Syntax:
aux_input?:<axis>

Side Effects:
Each axis is provided with an auxiliary TTL level input line which
may be read by means of this query command. Unlike the limit
switch input lines which are internally pulled high, this input must
be driven to its logic level by an external source.

Returns:
The mailbox contains an ASCII numeric character:

0 (zero) if the input voltage level is TTL low.

1 (one) if the input voltage level is TTL high.

Example:
An external circuit is driving the voltage of the auxiliary_input pin
of the “c” axis high when the following command is issued:

aux_input?:c

As a result, the following character appears in the mailbox:

1

COMMANDSAUX_INPUT?

User GuidePage 98

AXIS

Synopsis:
Select whether the outputs associated with the designated axis are
to be used for motor control, for discrete digital output, or for
switch scanning

Syntax:
axis:<axis>,<mode>

<mode> Meaning

0 Axis is used for motor control

1 Axis is used for discrete digital output

2 Axis is used for switch scanning

(3 Axis is reserved for the feed rate override feature)*

Side Effects:
The default mode of each axis accommodates the use of its associ-
ated output signals for motor control. By changing the mode using
the axis command, the output signals can be used for simplified dis-
crete output control using the bit command, or for joystick and
switch scanning operations using the scan and joystick commands.

Once the mode of an axis is changed, the limit switch inputs of that
axis may be assigned for special use associated with the feed hold
features using the feedhold_input command.

* “Mode 3” is assigned by Indexer LPT to the axis that is associ-
ated with the feed rate override hardware. Consequently, you can-
not use this command to change an axis to or from “mode 3”.

Returns:
After changing the mode of an axis using this command, the axis
may be restored to its original mode once at a later time in the same
manner. If, however, the limit switches are currently being used for
the feed hold feature, the axis command will not revert the axis
back to the motor control mode and the following message will
appear in the mailbox:

error,feedhold is enabled

(Otherwise, if the new value is accepted, an ASCII string repre-
senting the new mode for the axis will appear in the mailbox).

Consequently, the feed hold feature must be disabled using the fol-
lowing command:

feedhold_input:<axis>,0

AXISCOMMANDS

Page 99User Guide

before the axis command will permit the mode to be changed in this
instance.

Example:
After the following command is issued, the “d” axis is converted to
accommodate discrete digital output using the bit command.

axis:d,1

The following ASCII character appears in the mailbox:

1

The limit switches on the “d” axis may now be converted to support
the feed hold feature by means of the feedhold_input command.

Example:
The following command may be used to convert the axis back to
use as a motor controller:

axis:d,0

If the “d” axis is presently being used for the feed hold feature
inputs, the axis will not be converted for use as a motor controller
and the following error message will appear in the mailbox:

error,feedhold is enabled

Otherwise, the following ASCII character, representing the new
mode for the axis, will appear in the mailbox.

0

If the “d” axis has been assigned for the feed hold inputs, the fol-
lowing sequence of commands is necessary to re-configure it as a
motion controller:

feedhold_input:d,0
axis:d,0

COMMANDSAXIS

User GuidePage 100

AXIS?

Synopsis:
Read the “mode” of the designated axis.

Syntax:
axis?:<axis>

Returns:
An ASCII string depicting the mode of the axis is made available
to be read from the mailbox. The meaning of the mode is as fol-
lows:

0 Axis is set up for motor control.

1 Axis is set up for discrete digital output.

2 Axis is set up for switch scanning

3 Axis is reserved for the feed rate override feature

Example:
Assume the “c” axis had been set up for use as discrete digital out-
puts by means of the axis command. The following command
issued:

axis?:c

As a result, the following of ASCII character is available to be read
from the mailbox:

1

AXIS?COMMANDS

Page 101User Guide

BIT

Synopsis:
Exercise simplified discrete digital output control from the desig-
nated axis.

Syntax:

bit:<axis>,<bit number>,<logic level>

The “mode” of the designated axis must have been set to “1” using
the axis command.

The <bit number> argument specifies the axis output signal
lines as follows:

<bit number> Signal Line Name

0 Step

1 Direction

2 Reduced Current

3 All Windings Off

The <logic level> argument specifies the output signal level as fol-
lows:

<logic level> Output Voltage

1 TTL high

0 TTL low

Side Effects:
The signal line specified by <bit number> on the designated
axis assumes the designated logic level. The mode of the designat-
ed axis must be set to 1 using the axis command in order for this
command to function.

Returns:
An ASCII numeric character is available to be read from the mail-
box which indicates the logic level that has been established.

If the axis has not been set to “mode=1” using the axis command,
the bit command will not manipulate the digital output and the fol-

COMMANDSBIT

User GuidePage 102

lowing message will appear in the mailbox:

error,mode

Example:
Assume that the mode of the “b” axis has been changed using the
following command:

axis:a,1

Set the signal line named “reduced current” on the “a” axis to logic
level 1 (TTL high):

bit:a,2,1

After execution of this command the reduced current output of the
“a” axis assumes a corresponding TTL high voltage. The following
ASCII character appears in the mailbox:

1

BITCOMMANDS

Page 103User Guide

BIT?

Synopsis:
Return the logic level of the specified signal.

Syntax:
bit?:<axis>,<bit number>

The <bit number> argument specifies the axis output signal
lines as follows:

<bit number> Signal Line Name

0 Step

1 Direction

2 Reduced Current

3 All Windings Off

Returns:
This command returns the logic level of the signal specified by the
<bit number> argument for the designated axis.

It should be noted that depending on the construction of the printer
card being used, this command may read the actual voltage level
present on the signal pin. Consequently, if a short circuit connec-
tion forces the potential of the signal pin to ground, the return value
may be 0 even if the pin was set to logic 1 by another Indexer LPT
command.

Example:
The mode of axis “c” has been set to 1 and bit number 2 (Reduced
Current, pin 3 on the connector) has been set to logic 1 using the
bit command. Approximately 5 volts (TTL high) is present on this
signal. The following command is issued:

bit?:c,2

As a result, the following ASCII character is placed in the mailbox:

1

COMMANDSBIT?

User GuidePage 104

CAL

Synopsis:
Force timing calibration to a particular port.

Syntax:
cal:<axis>

Side Effects:
Indexer LPT calibration timing is accomplished to the port of the
specified axis. Timing numbers are saved to the system Registry,
and used whenever Indexer LPT is loaded. Calibration timing for
this axis applies to all axes.

Returns:
A character reflecting the name of the axis that was used for cali-
bration

appears in the mailbox.

CALCOMMANDS

Page 105User Guide

CIRCLE

Synopsis:
Use the designated axes to traverse a circle around the specified
center point. Optionally traverse up to two additional axes propor-
tionately to the subtended angle (helical interpolation).

Syntax:
circle:<direction>,<axis>,<steps to cp>,

<axis>,<steps to cp>
[,<axis>,<steps>[,<axis>,<steps>]]

The direction in which the circle is drawn, clockwise or counter
clockwise, is determined by the first command argument and the
order in which the axes appear on the command line. “Clockwise”
and “counterclockwise” are perceived in three dimensional space
by “wrapping” the first axis into the second axis with the fingers of
the right hand and viewing the circular motion from the direction of
the thumb.

<direction> Meaning

cw arc is subtended clockwise

ccw arc is subtended counterclockwise

<steps to cp> Signed magnitude of steps from the present
position to the position of the center point.

Side Effects:
The circle is traversed with the specified axes at a vector velocity
determined by the motion parameters set up in the feed_lowspeed,
feed_highspeed and feed_accel registers. If a limit switch closure
of a member axis is detected in an associated direction of move-
ment, all motion is terminated and position tracking is lost.

The arc or helix is approximated by linear segments. The segment
angle is determined by the arcseg_degrees register. Linear seg-
ments approximating the geometry are loaded into and executed
from the queue buffer. Motion along the paths of the interpolation
are governed by setup parameters in the feed_lowspeed, feed_high-
speed, and feed_accel registers.

If a queue load sequence has been initiated with the q_begin com-
mand, the segments comprising this command are appended to the
end of the queue buffer.

If a queue load sequence has not been initiated, then this command
automatically begins the queue load sequence, loads the interpola-
tion segments into the queue buffer, closes the sequence, and exe-

COMMANDSCIRCLE

User GuidePage 106

cutes the motion.

Returns:
If position tracking is in effect, an ASCII string representing the
final position of each axis is placed in the mailbox. Position infor-
mation concerning each axis is separated by a colon and appears in
the order in which the axes are called out on the command line.

Example:
Assume the present position of the “a” axis is 1000 and the present
position of the “b” axis is 2000. To draw a circle in the clockwise
direction using a center point located 100 steps in the negative “a”
direction and 500 steps in the “b” direction, the following com-
mand is issued:

circle:cw,a,-100,b,500

After the circle is traversed, the following message appears in the
mailbox.

1000:2000

Assume the conditions of this example. Now Indexer LPT senses
a closure of the high limit switch of the “a” axis when the “a” axis
is moving in the positive direction. In this case the “circle” com-
mand is abruptly terminated and the following message appears in
the mailbox:

limit,a,+:unknown position

Example
This example traverses a circle in the “a” and “b” axes, while
simultaneously moving the “c” and “d” axes to their destination
locations along a trajectory that is proportional to the angle being
subtended:

circle:ccw,a,0,b,100,c,50,d,75

If all axes started from the home position, the following message,
reporting the positions of the axes that were moved, appears in the
mailbox:

0:0:50:75

CIRCLECOMMANDS

Page 107User Guide

COMMAND_MEM?

Synopsis:
Determine how much memory a command type would occupy if
entered into the queue buffer.

Syntax:
command_mem?:<command>[command argument]

Returns:
An ASCII numeric string designating the amount of queue memo-
ry in bytes which a command would occupy when loaded into the
queue buffer is placed in the mailbox.

If the command is not one which can be queued, the following mes-
sage appears in the mailbox:

not supported

Side Effects:
When the feed command is tested using this command, the argu-
ments to the feed command can optionally be included.

When circular interpolation commands are being tested, such as
circle, arc_to_point, and arc_to_angle, their arguments must be
included, since the arguments determine the amount of memory
which these commands would occupy.

Example:
The following command is issued:

command_mem?:feed

As a result, an ASCII numeric string designating the amount of
memory a feed command occupies in the queue buffer is placed in
the mailbox.

The following command would yield the same result:

command_mem?:feed:a,1000,b,-500

Example:
Consider the following command:

command_mem?:arc_to_point:cw,a,0,b,1000,180

As a result, an ASCII numeric string designating the amount of
memory this command would occupy in the queue buffer is placed
in the mailbox. Since the amount of memory required for circular

COMMANDSCOMMAND_MEM?

User GuidePage 108

interpolation is based on the number of segments used to approxi-
mate the geometry, under normal circumstances the following com-
mand will yield a value that is half that of the following command:

command_mem?:arc_to_point:cw,a,0,b,1000,90

Example:
The following command is issued:

command_mem?:set_lowspeed

As a result, the following message appears in the mailbox:

not supported

COMMAND_MEM?COMMANDS

Page 109User Guide

DWELL

Synopsis:
Delay for the amount of time designated by <value> in hundreths
of a second.

Syntax:
dwell:<value>

Side Effects:
This command will cause the computer to delay (do nothing) for
the specified amount of time. The maximum delay time possible
using this command is four (4) seconds.

If the <value> argument is out of range (above 400), or if it cannot
be interpreted, this command will delay for the maximum amount
of 4 seconds.

DANGER
Avoid unexpected motion after extended delay. In applica-
tions such as machine tool control, allowing the machine to
dwell for an extended period of time and resuming motion
without warning could present a dangerous condition.

Do not use this command in critical timing applications.
Extending delay time by repetitive execution of this com-
mand will result in a cumulative error in the total delay
time.

Returns:
After successful execution the following message appears in the
mailbox:

finished

If the <value> argument is over 400, or if it is not decipherable, the
following message appears in the mailbox after the maximum peri-
od of delay:

error,range

COMMANDSDWELL

User GuidePage 110

FEATURES?

Synopsis:
Determine the features installed in the Hardware Assist Module.

Syntax:
features?

Returns:
An ASCII string designating the features installed into the
Hardware Assist Module (HAM) appears in the mailbox.

Associated characters and features are as follows:

X Extended Queue Buffer.

E Limited to 4 simultaneous axes (to meet export regulations).

G License includes "G Code Controller" product.

H License includes "HPGL Controller" product.

(Check the README.TXT file on the distribution media for
addtional features that may not be included in this manual).

Example:
The following string is written to Indexer LPT:

Example:

If the HAM supports Indexer LPT/XQ (extended queue), the "G
Code Controller" and the "HPGL Controller", when the following
command is issued:

features?

The mailbox will report the following string:

XGH

FEATURES?COMMANDS

Page 111User Guide

FEED

Synopsis:
Simultaneously move the selected axes by specified amounts such
that the “best” fit line is traversed. Accelerate to the vector veloci-
ty determined by the feed_highspeed register. This command uses
a velocity profile determined by the feed_lowspeed, feed_high-
speed, and feed_accel registers.

Syntax:
feed:<axis>,<steps> ... [,<axis>,<steps>]

Side Effects:
Limit switch closure - If a limit switch closure is encountered
from a limit switch associated with the direction of travel, motion
is abruptly terminated. Limit switch closure on any axis in motion
will arrest all motion. When a limit switch stop is encountered,
position tracking is lost on all axes in motion.

Motion Parameters - The syntax and use of the feed command is
similar to the move command. Unlike the move command, the
maximum linear velocity along the path of traversal of the com-
bined movement (vector velocity) is governed by the parameter set
up in the feed_highspeed register. (Using the move command, the
combined movement is governed by the motion parameters of the
dominant axis. The move command is usually used for rapid tra-
versal). The feed command is used where the vector velocity must
be controlled.

Acceleration and starting velocity of the dominant axis is governed
by the feed_accel and feed_lowspeed registers, respectively. The
rate of the dominant axis after acceleration is such that the vector
velocity specified in the feed_highspeed register is attained.

Returns:
An ASCII string reports the status of each axis in a similar manner
to the move command. Information regarding participating axes
appears in a message which may be read from the mailbox.
Information relating to each axis is separated by a colon (:) and
appears in the order in which the axes are called out on the com-
mand line.

Example:
Assume a custom engraver is being controlled by the “a” and “b”
axes. Each step translates to .001 inches of movement along the
associated axis. Using the set_feed_lowspeed command, the
feed_lowspeed register is set to 200 steps per second. Using the

COMMANDSFEED

User GuidePage 112

set_feed_accel command, the feed_accel register is set to 3500
steps per second squared, and using the set_feed_highspeed com-
mand the feed_highspeed register is set to 500 steps per second.

In this example, the contents of the feed_highspeed register estab-
lishes an actual feed rate of .5 inches per second.

The following command is issued:

feed:a,9000,b,12000

The “b” axis, which is dominant due to its greater number of steps,
will start moving at 200 steps per second and accelerate to 400
steps per second at a rate of 3500 steps per second-per second.
(Indexer LPT calculates the rate of 400 steps per second of the
dominant axis in order to establish a cutting speed of .5 inches per
second along the path of the cut).

Example:
A cutting tool is controlled in three axes. Assume each step repre-
sents .001 inch of travel. The value set in the feed_highspeed regis-
ter is 1000 steps per second, which translates into an actual feed
rate of 1 inch per second. The following command is issued:

feed:a,3000,b,4000,c,6000

After acceleration, the dominant “c” axis will maintain a rate of 768
steps per second in order to accomplish the feed rate of 1 inch per
second along the path of the cut.

In this example, assume the positions of the “a”, “b”, and “c” axes
were 50, 70, and 90 respectively. After the execution of the com-
mand, the following message appears in the mailbox:

3050:4070:6090

FEEDCOMMANDS

Page 113User Guide

FEED_ACCEL?

Synopsis:
Read the contents of the feed_accel register.

Syntax:
feed_accel?

Returns:
An ASCII numeric string designating the contents of the feed_accel
register in steps per second-per second is placed in the mailbox.
This value is either the default value, or the value which was set by
the set_feed_accel command.

Example:
Assume the value of the feed_accel register has been previously set
to 495. To make this value available to be read from the mailbox the
following command is issued:

feed_accel?

As a result, the following string of ASCII characters is placed in the
mailbox:

495

COMMANDSFEED_ACCEL?

User GuidePage 114

FEED_HIGHSPEED?

Synopsis:
Read the contents of the feed_highspeed register.

Syntax:
feed_highspeed?

Returns:
An ASCII numeric string designating the value of the feed_high-
speed register is placed in the mailbox. This value is either the
default value, or the value which was set by a set_feed_highspeed
command.

Example:
Assume the value of the feed_highspeed control register has been
previously set to 750. To make this value available to be read from
the mailbox, the following command is issued:

feed_highspeed?

As a result, the following string of ASCII characters appears in the
mailbox.

750

FEED_HIGHSPEED?COMMANDS

Page 115User Guide

FEED_LOWSPEED?

Synopsis:
Read the contents of the feed_lowspeed register.

Syntax:
feed_lowspeed?

Returns:
An ASCII numeric string designating the initial velocity in steps
per second of the feed_lowspeed register is placed in the mailbox.
This value is either the default value, or the value which was set by
a set_feed_lowspeed command.

Example:
Assume the value of the feed_lowspeed control register has been
previously set to 250. To make this value available to be read from
the mailbox the following command is issued:

feed_lowspeed?

As a result, the following string of ASCII characters appears in the
mailbox:

250

COMMANDSFEED_LOWSPEED?

User GuidePage 116

FEEDHOLD?

Synopsis:
Return the logical condition of the feed hold input.

Syntax:
feedhold?

Returns:
The mailbox contains an ASCII numeric character:

1 if the feed hold input is activated

0 if the feed hold input is not activated

The feed hold input is “activated” when there exists an open circuit
on the high limit switch input (TTL high) of the axis designated to
support the feed hold features. The feed hold input is “not activat-
ed” when this pin is connected to ground (TTL low).

If this command is issued and the feed hold feature has not been
enabled, the following message appears in the mailbox:

error,disabled

Example:
Assume the “d” axis has been specified to support the feed hold fea-
ture by means of the following command sequence:

axis:d,1
feedhold_input:d,1

In this example also assume the high limit switch input of the “d”
axis, which now serves as the feed hold input, is at TTL low poten-
tial due to a circuit path to ground through a normally closed
switch. (In this situation the feed hold feature is not activated, and
motion commands will not be suspended). The following command
is issued:

feedhold?

As a result, the following ASCII character appears in the mailbox:

0

Assume that a motion command is NOT in progress and the switch
in this example is open, causing the feed hold input to be activated.
After the feedhold? command is issued, the following ASCII char-
acter appears in the mailbox:

FEEDHOLD?COMMANDS

Page 117User Guide

1

It should be noted that Indexer LPT is not accessible when motion
is in the process of being suspended using the feed hold feature.
Consequently, the feedhold? command cannot be used to determine
the status of the feed hold input when the feed hold feature is active-
ly suspending another command.

COMMANDSFEEDHOLD?

User GuidePage 118

FEEDHOLD_INPUT

Synopsis:
Assign the feed hold feature to be controlled by the limit switch
inputs of the designated axis.

Syntax:
feedhold_input:<axis>,<status>

<status> Meaning

0 Disable limit switches for use with feed hold features.

1 Enable limit switches for use with feed hold features.

Side Effects:
This command converts the high and low limit switch inputs on the
designated axis to special use as feedhold and abort inputs respec-
tively. The axis must either be internally assigned to “mode 3”, or
it must be placed in “mode 1” using the axis command as follows:

axis:<axis>,1

Only one axis can be designated to support the feed hold feature.
The axis which supports the feed hold feature may be changed by
subsequent use of this command.

Once an axis has been converted for use with the feed hold feature,
the high limit switch input serves as the feed hold input. The low
limit switch input serves as the abort input. TTL low voltage
applied to the feed hold input is required for motion on any or all
axes. An open circuit on the feed hold input, resulting in TTL high
voltage, suspends motion. Motion resumes if the feed hold input is
returned to TTL low. If motion is being suspended, TTL low
applied to the abort input breaks out of (aborts) the Indexer LPT
motion command which is being suspended.

Returns:
If the designated axis is in neither “mode 3” nor “mode 1”, the
feedhold_input command will have no effect. The following mes-
sage appears in the mailbox:

error,mode

Otherwise, an ASCII character representing the feed hold status
will appear in the mailbox.

If the feed hold feature is enabled and a motion command is sus-
pended because of the feed hold input line, and if the motion com-

FEEDHOLD_INPUTCOMMANDS

Page 119User Guide

mand is terminated by means of the abort input, the following mes-
sage appears in the mailbox:

abort

Example:
Using the following command, the “d” axis is converted from its
default mode as a motor controller to the mode supporting discrete
digital output:

axis:d,1

The following command is issued to specify the limit switch inputs
of the “d” axis for special use to support the feed hold feature:

feedhold_input:d,1

The following ASCII character appears in the mailbox:

1

Subsequently, the following Indexer LPT command is issued:

move:a,35000,b,10000

While the “a” and “b” axes are in motion, Indexer LPT senses an
open circuit on the feed hold input line. The motion on the “a” and
“b” axes is decelerated to a controlled stop. Motion is arrested until
the feed hold input line is brought to a ground potential (de-acti-
vated). Once the feed hold input is de-activated, the Indexer LPT
completes the move command.

If the abort input line is brought to ground potential before the feed
hold input line is de-activated, the move command will not be com-
pleted and the following ASCII string will appear in the mailbox:

abort

Example:
Assume the “d” axis is in “mode 0” or “mode 2”, and the following
command is issued:

feedhold_input:d,1

The feed hold feature will NOT be enabled for this axis, and the fol-
lowing string of ASCII characters appears in the mailbox:

error,mode

COMMANDSFEEDHOLD_INPUT

User GuidePage 120

FEEDHOLD_INPUT?

Synopsis:
Determine which axis, if any, is set up to support the feed hold fea-
ture.

Syntax:
feedhold_input?

Returns:
An ASCII character representing the axis which is designated to
support the feed hold feature appears in the mailbox. If no axis has
been designated, the following message appears in the mailbox:

none

Example:
The “d” axis is designated to support the feed hold feature by
means of the following command sequence:

axis:d,1
feedhold_input:d,1

The following command is then issued:

feedhold_input?

As a result the following message appears in the mailbox:

d

FEEDHOLD_INPUT?COMMANDS

Page 121User Guide

FRO?
Read the calculated percentage of feed rate override that is applied
to motion, consisting of the combined effect of the FRO input volt-
age and the value of the fro_offset register.

Syntax:
fro?

Example:
Assume the fro_highvolt register is set to 256, the fro_high register
is set to 130 and the fro_offset register contains the default value of
0. If 5.0 volts is applied to pin 11 of the HAM and the following
command is issued:

fro?

these ASCII characters will appear in the mailbox:

130

In this example, if the fro_offset register contained a value of -10,
the fro? command would return 120. However, if the fro_offset reg-
ister contained a value of 10, the fro? command would return 130,
since the amount of feed rate override cannot exceed the value set
up in the fro_high register.

COMMANDSFRO?

User GuidePage 122

FRO_DELAY?

Synopsis:
Read the contents of the fro_delay register.

Syntax:
fro_delay?

Returns:
An ASCII numeric string designating the setting of the fro_delay
registerappears in the mailbox. The value of the fro_delay register
can be changed by means of the set_fro_delay command.

FRO_DELAY?COMMANDS

Page 123User Guide

FRO_HIGH?

Synopsis:
Read the contents of the fro_high register.

Syntax;
fro_high?

Returns:
An ASCII numeric string designating the setting of the fro_high
register appears in the mailbox. The value of the fro_high register
can be changed by means of the set_fro_high command.

COMMANDSFRO_HIGH?

User GuidePage 124

FRO_HIGHVOLT?

Synopsis:
Read the contents of the fro_highvolt register.

Syntax:
fro_highvolt?

Returns:
An ASCII numeric string designating the setting of the fro_highvolt
register appears in the mailbox. The value of the fro_highvolt reg-
ister can be changed by means of the set_fro_highvolt command.

FRO_HIGHVOLT?COMMANDS

Page 125User Guide

FRO_LOW?

Synopsis:
Read the contents of the fro_low register.

Syntax:
fro_low?

Returns:
An ASCII numeric string designating the setting of the fro_low reg-
ister appears in the mailbox. The value of the fro_low register can
be changed by means of the set_fro_low command.

COMMANDSFRO_LOW?

User GuidePage 126

FRO_LOWVOLT?

Synopsis:
Read the contents of the fro_lowvolt register.

Syntax:
fro_lowvolt?

Returns:
An ASCII numeric string designating the setting of the fro_lowvolt
register appears in the mailbox. The value of the fro_lowvolt regis-
ter can be changed by means of the set_fro_lowvolt command.

FRO_LOWVOLT?COMMANDS

Page 127User Guide

FRO_RES?

Synopsis:
Read the contents of the fro_res register.

Syntax:
fro_res?

Returns:
An ASCII numeric string designating the setting of the fro_res reg-
ister appears in the mailbox. The value of the fro_res register can
be changed by means of the set_fro_res command.

COMMANDSFRO_RES?

User GuidePage 128

FRO_VOLT?

Synopsis:
Read the voltage from FRO input pin 11 of the Hardware Assist
Module.

Syntax:
fro_volt?

Side Effects:
Voltage is read from pin 11 with reference to ground (pins 18-25)
in increments of 5/256 = 0.01953 Volts over a range of 0 to 5 volts,
corresponding to 0 to 256 increments.

Returns:
ASCII Numerical values over a range of 0 to 256.

Example:
If 1.0 Volts is presented at pin 11 when the following commandis
issued:

fro_volt?

the following ASCII characters will appear in the mailbox:

51

corresponding to the nearest increment to the value 1/(5/256)

FRO_VOLT?COMMANDS

Page 129User Guide

HAM_TYPE?

Synopsis:
Report the numerical type of the Hardware Assist Module.

Syntax:
ham_type?

Returns:
An ASCII numerical value designatingthe type of Hardware
Assist Module that is installed in the system appears in the mail-
box

COMMANDSHAM_TYPE?

User GuidePage 130

HIGHSPEED?

Synopsis:
Read the contents of the highspeed register.

Syntax:
highspeed?:<axis>

Returns:
An ASCII numeric string designating the highspeed setting of
selected axis in steps per second appears in the mailbox. This value
is either the default value, or the value which was set by a set_high-
speed command.

Example:
Assume the value of the highspeed control register for the “c” axis
has been previously set to 755. To make this value appear in the
mailbox the following command is issued:

highspeed?:c

As a result the following string of ASCII characters appears in the
mailbox:

750

HIGHSPEED?COMMANDS

Page 131User Guide

HOME

Synopsis:
Move the selected axis to the home reference position established
by the set_home command.

Syntax:
home:<axis>

Side Effects:
The axis moves to the home position. Velocity and acceleration are
governed by the associated lowspeed, highspeed, and acceleration
registers. This command will only function if the set_home com-
mand has been previously issued for the selected axis.

Returns:
After successful completion, an ASCII 0 (zero character) appears
in the mailbox. If the axis reference home position has not been
established with the set_home command, the following error mes-
sage appears in the mailbox:

error,position

COMMANDSHOME

User GuidePage 132

JOG

Synopsis:
Move the selected axis the desired number of steps using a constant
velocity profile.

Syntax:
jog:<axis>,<steps>

Side Effects:
If a limit switch closure is encountered on the limit switch associ-
ated with the direction of travel, motion is abruptly terminated.
Unlike other motion commands, position tracking information is
preserved.

Returns:
If the position register for the axis being moved has been previous-
ly initialized with the set_home command, an ASCII numeric string
representing the value of the position register is returned.

If a limit switch closure is encountered from the limit switch asso-
ciated with the direction of travel, motion is abruptly terminated. In
this case the return string of the jog command represents the posi-
tion where the motor has stopped.

DANGER
The limit switch detection features of this program are
designed only to provide limit detection within the normal
operating region of the device being controlled and NOT to
provide over-travel protection in cases where equipment
damage or personal injury may result. In cases where
equipment damage or personal injury is possible
due to over-travel, other means of limit protection is
imperative.

Example:
The “a” axis motor is at a position of 200 steps relative to home. To
move the “a” axis 500 steps in the negative direction issue the com-
mand:

jog:a,-500

The motor will move 500 steps in the negative direction and the fol-
lowing ASCII string appears in the mailbox:

-300

JOGCOMMANDS

Page 133User Guide

Example:
The position of the “b” axis is 500 when the motor is instructed to
move to position 800 by the following command:

jog:b,300

After the motor moves 80 steps, motion is arrested by the closure
of the high limit switch. The following ASCII string appears in the
mailbox:

limit,b,+

The position of the axis may be determined now by issuing the fol-
lowing command:

position?:b

The following string now appears in the mailbox:

580

As long as this limit switch remains closed, the motor cannot be
moved in the positive direction. In this example, the motor is
“backed away” from the high limit switch by moving it in the neg-
ative direction using the following command:

move:b,-200

The motor moves 200 steps in the negative direction and the fol-
lowing string appears in the mailbox:

380

COMMANDSJOG

User GuidePage 134

JOGSPEED?

Synopsis:
Read the contents of the jogspeed register.

Syntax:
jogspeed?:<axis>

Returns:
An ASCII numeric string designating the jog speed setting of
selected axis in steps per second appears in the mailbox. This value
is either the default value, or the value which was set by a
set_jogspeed command.

Example:
Assume the value of the jogspeed control register for the “c” axis
has been previously set to 250. To make this value appear in the
mailbox the following command is issued:

jogspeed?:c

As a result the following string of ASCII characters appears in the
mailbox:

250

JOGSPEED?COMMANDS

Page 135User Guide

JOYSTICK_INPUT

Synopsis:
Define the operation of the joystick switches.

Syntax:
joystick_input:<joystick axis>,

<selection>,<s/d axis>,
<s/d increment>,<r/a axis>,
<r/a increment>

or

joystick_input:clear

<joystick axis> - Axis which is used to scan the joystick
control switches.

<selection> 0 or 1

0 defines joystick behavior for the case when a scan between
the joystick axis all windings off output and the joystick axis low
limit switch input determines an open circuit condition.

1 defines joystick behavior for the case when a scan between
the joystick axis all windings off output and the joystick axis low
limit switch input determines an closed circuit condition.

<s/d axis> Axis which is controlled by scanning the joystick
axis step and direction outputs into the joystick axis high limit
switch input.

<s/d increment> When a scan between the joystick axis
reduced current output and the joystick axis low limit switch input
indicates a closed circuit connection, this parameter determines the
number of steps which can be issued over the s/d axis between the
.5 second latency period.

<r/a axis> Axis which is controlled by scanning the joystick axis
reduced current and all windings off outputs into the joystick axis
high limit switch input.

<r/a increment> When a scan between the joystick axis reduced
current output and the joystick axis low limit switch input indicates
a closed circuit connection, this parameter determines the number
of steps which can be issued over the r/a axis between the .5 sec-
ond latency period.

Note: The "mode" of the joystick axis must have been set to 2
using the axis command.

COMMANDSJOYSTICK_INPUT

User GuidePage 136

Side Effects:
This command defines the operation of the joystick_go command
by designating the joystick control axis and the associated axes to
be controlled. Otherwise, when used with the clear argument,
this command clears set-up parameters stored from previous joy-
stick_input commands.

Returns:
Upon successful completion, a string of characters representing the
values which were stored appears in the mailbox:

<joystick axis>,<selection>,<s/d axis>,
<s/d increment>,<r/a axis>,
<r/a increment>

Otherwise, the following error messages may appear in the mail-
box:

error,mode

The joystick axis is not in mode 2, or one of the other axes is not
in mode 0 (The default mode for all axes is 0. The mode of any axis
can be changed using the axis command).

error,assignment

Only one axis on the system can be specified for use with the joy-
stick input. This error message is generated if an axis has been
assigned for use as the joystick input by a previous joystick_input
command, and the present command attempts to specify a different
one.

joystick is cleared

This message is generated as a response to the following command:

joystick_input:clear

Example:
Consider a motion system where the "e" axis is to be used for joy-
stick switch scanning. The following conditions are desired:

Axes "a" and "b" are to be controlled under selection 0. (Selection
0 is physically set (by an open switch circuit), and scanning
between the joystick axis all windings off output and the joystick
axis low limit switch input determines an open circuit connection.

Axes "c" and "d" are to be controlled under selection 1. (Selection
1 is physically set (by a closed switch circuit), and scanning

JOYSTICK_INPUTCOMMANDS

Page 137User Guide

between the joystick axis all windings off output and the joystick
axis low limit switch input determines a closed circuit connection).

When scanning between the joystick axis reduced current output
and the joystick axis low limit switch input detects a closed circuit
condition (placing the control feature in "nudge" mode), the desired
number of burst steps set up for axis “a” is 10, ”b” is 11, “c” is 12,
and “d” is 13.

The complete software setup is as follows:

Make sure axes to be controlled are in
#default mode
axis:a,0
axis b,0

Joystick control axis in scanning mode
axis:e,2

Setup for open circuit selection switch
joystick_input:e,0,a,10,b,11

Setup for closed circuit selection switch
joystick_input:e,1,c,12,d,13

To activate the joystick the following command is issued:

joystick_go

COMMANDSJOYSTICK_INPUT

User GuidePage 138

JOYSTICK_INPUT?

Synopsis:
Read the setup information established by means of the
joystick_input command.

Syntax:
joystick_input:<selection>

<selection> 0 or 1

0 read joystick parameters defined for the case when a scan
between the joystick axis all windings off output and the joystick
axis low limit switch input determines an open circuit condition.

1 read joystick parameters defined for the case when a scan
between the joystick axis all windings off output and the joystick
axis low limit switch input determines an closed circuit condition.

Returns:
<joystick axis>,<selection>,<s/d axis>,

<s/d increment>,<r/a axis>,
<r/a increment>

<s/d axis> Axis which is controlled by scanning the joystick
axis step and direction outputs into the joystick axis high limit
switch input.

<s/d increment> When a scan between the joystick axis
reduced current output and the joystick axis low limit switch input
indicates a closed circuit connection, this parameter determines the
number of steps which can be issued over the s/d axis between the
.5 second latency period.

<r/a axis> Axis which is controlled by scanning the joystick
axis reduced current and all windings off outputs into the joystick
axis high limit switch input.

<r/a increment> When a scan between the joystick axis
reduced current output and the joystick axis low limit switch input
indicates a closed circuit connection, this parameter determines the
number of steps which can be issued over the r/a axis between the
.5 second latency period.

Example:
Assume following joystick_input commands have been issued:

JOYSTICK_INPUT?COMMANDS

Page 139User Guide

joystick_input:e,0,a,10,b,11
joystick_input:e,1,c,20,none,none

When followed by this command:

joystick_input?:0

Indexer LPT places the following message in the mailbox:

e,0,a,10,b,11

When this command is issued:

joystick_input?:1

Indexer LPT places the following message in the mailbox:

e,1,c,20,none,none

COMMANDSJOYSTICK_INPUT?

User GuidePage 140

JOYSTICK_GO

Synopsis:
Continuously scan the axis designated for joystick input.

Syntax:
joystick_go

Side Effects:
If a joystick axis has not been designated by means of the joy-
stick_input command, the joystick_go command exits immediately,
leaving an error message in the mailbox. Otherwise, joystick con-
trol is performed as per parameters set up via joystick_input com-
mand(s).

This command causes the four outputs of the designated joystick
axis to be continuously scanned into the high limit switch input and
the low limit switch input of the designated joystick axis. Axes set
up for motion control under the joystick_input command are caused
to move according to the status of the switch scan and the setup
parameters.

Scanning is discontinued when a scan between the direction output
into the low limit switch input indicates a closed circuit condition.

This command occupies the computer until scanning is terminated.

Returns:
In normal operation, once terminated this command fills the mail-
box with the name and position of each axis which has been set up
for joystick control via the joystick_input command. The format is
as follows:

<axis>,<position>...[,<axis>,<position>]

From one to four axes may be included in the message, depending
on how many axes have been set up to be controlled by the joystick.
If no axis has been set up for joystick control via the joystick_input
command, the following message appears in the mailbox:

error,joystick is disabled

Example:

Consider the following sequence of commands:

axis:e,2

JOYSTICK_GOCOMMANDS

Page 141User Guide

joystick_input:e,0,a,10,b,10
joystick_input:e,1,none,none,c,20
set_home:a
set_home:b
set_home:c
joystick_go

Assume that following the joystick_go command, the joystick is
used to move the "a" axis 1250 steps in the positive direction, the
"b" axis 447 steps in the negative direction, and the "c" axis 223
steps in the positive direction.

Scanning continues until contact is made between the direction out-
put of the "e" axis and the low limit switch input of the "e" axis. by
means of a pushbutton switch wired for this purpose.

The following message subsequently appears in the mailbox:

a,1250,b,-447,c,223

COMMANDSJOYSTICK_GO

User GuidePage 142

-LIMIT?

Synopsis:
Determine if the low (-) limit switch is closed.

Syntax:
-limit?:<axis>

Side Effects:
When TTL low, the low limit switch input arrests motion in the neg-
ative (-) direction. This command simply queries the condition of
the low limit switch input.

Returns:
The mailbox contains an ASCII numeric character:

0 if the low limit switch is open, allowing the voltage at the
associated input pin to be internally pulled TTL high.

1 if the low limit switch is closed, grounding the associated
input pin.

It should be noted that unlike some of the other query commands,
this command returns the logical condition of the switch and NOT
the TTL logic level of the input pin.

DANGER
The limit switch detection features of this program are
designed only to provide limit detection within the normal
operating region of the device being controlled and NOT to
provide over-travel protection in cases where equipment
damage or personal injury may result. In cases where
equipment damage or personal injury is possible due to
over-travel, other means of limit protection is imperative.

Example:
Using the move command, the motion of the “a” axis is interrupted
in the negative direction by the closure of the low limit switch. The
physical member being controlled by the “a” axis is still in contact
with the limit switch when the following command is executed:

-limit?:a

The following character appears in the mailbox:

1

-LIMIT?COMMANDS

Page 143User Guide

The limit switch closure is then removed and the following com-
mand is once again issued:

-limit?:a

The following character appears in the mailbox:

0

COMMANDS-LIMIT?

User GuidePage 144

+LIMIT?

Synopsis:
Determine if the high (+) limit switch is closed.

Syntax:
+limit?:<axis>

Side Effects:
When TTL low, the high limit switch input arrests motion in the
positive (+) direction . This command simply queries the condition
of the high limit switch.

Returns:
The mailbox contains an ASCII numeric character:

0 if the high limit switch is open, allowing the voltage at the
associated input pin to be internally pulled TTL high.

1 if the high limit switch is closed, grounding the associated
input pin.

It should be noted that unlike some of the other query commands,
this command returns the logical condition of the switch and NOT
the TTL logic level of the input pin.

DANGER
The limit switch detection features of this program are
designed only to provide limit detection within the normal
operating region of the device being controlled and NOT to
provide over-travel protection in cases where equipment
damage or personal injury may result. In cases where
equipment damage or personal injury is possible due to
over-travel, other means of limit protection is imperative.

Example:
Using the move command, the motion of the “a” axis is interrupted
in the positive direction by the closure of the high limit switch. The
physical member being controlled by the “a” axis is still in contact
with the limit switch when the following command is executed:

+limit?:a

The following character appears in the mailbox:

1

+LIMIT?COMMANDS

Page 145User Guide

The limit switch closure is then removed and the following com-
mand is once again issued:

+limit?:a

The following character appears in the mailbox:

0

COMMANDS+LIMIT?

User GuidePage 146

LOWSPEED?

Synopsis:
Read the contents of the lowspeed register.

Syntax:
lowspeed?:<axis>

Returns:
An ASCII numeric string designating the lowspeed setting of
selected axis in steps per second appears in the mailbox. This value
is either the default value, or the value which was set by a
set_lowspeed command.

Example:
Assume the value of the lowspeed register for the “c” axis has been
previously set to 250. To make this value appear in the mailbox the
following command is issued:

lowspeed?:c

As a result the following string of ASCII characters appears in the
mailbox:

250

LOWSPEED?COMMANDS

Page 147User Guide

MAX_Q_MEM?

Synopsis:
Determine the amount of memory which can be made available for
use in the queue buffer.

Syntax:
max_q_mem?

Returns:
An ASCII numeric string designating the amount of memory which
can be made available for use in the queue buffer is placed in the
mailbox.

The amount of queue buffer memory is limited by the amount that
Windows makes available for use, and is determined by the physi-
cal memory capacity of your computer.

Side Effects:
This command only reports the amount of memory that CAN be
made available to Indexer LPT. To make a portion or all of this
memory available to Indexer LPT, use the set_q_mem command.

Example
The following string is written to Indexer LPT:

max_q_mem?

As a result an ASCII string designating the amount of memory
available for use by Indexer LPT appears in the mailbox, such as

4235642

COMMANDSMAX_Q_MEM?

User GuidePage 148

MAX_SPEED?

Synopsis:
Determine the maximum velocity in steps per second which can be
accomplished by the host computer system. This represents the
maximum value which may be entered in the highspeed or the
feed_highspeed register for any axis.

Syntax:
max_speed?

Returns:
An ASCII numeric string appears in the mailbox representing the
value of the absolute maximum speed which can be obtained from
Indexer LPT on the computer which is being used. The return
value for this command will vary depending upon the speed of the
host computer. The faster the computer, the greater the maximum
possible speed will be.

Since calibration of the timing parameters occurs each time the pro-
gram is loaded, and since calibration is somewhat asynchronous in
nature, the value may vary somewhat each time the program is run.
The faster the computer, the less pronounced the variations tend to
be.

MAX_SPEED?COMMANDS

Page 149User Guide

MOVE

Synopsis:
Simultaneously move the selected axes the specified amount using
the “best fit” straight line strategy. This command uses a constant
acceleration profile. One to six axes may be moved simultaneous-
ly.

Syntax:
move:<axis>,<steps> ... [,<axis>,<steps>]

Side Effects:
Limit switch closure - If a limit switch closure is encountered
from a limit switch associated with the direction of travel, motion
is abruptly terminated and position tracking information is lost.
Limit switch closure on any axis in motion will arrest all motion.
When a limit switch stop is encountered, position tracking is lost on
all axes in motion.

Motion parameters - Parameters associated with the dominant
axis (the axis which is being moved the greatest amount of steps)
govern the coordinated movement. The other axes are controlled
according to the “best fit” straight line strategy. The dominant axis
moves according to parameters stored in its associated lowspeed,
highspeed, and accel registers. The move command is generally
used to implement the most rapid traversal.

Returns:
If position tracking has been initialized, an ASCII numeric string
representing the value of the position register appears in the mail-
box. Otherwise, the following message appears:

unknown position

For multiple axis moves, information on each axis is separated by
a colon (:) and appears in the order in which the axes are called on
the command line.

If a limit switch closure is encountered from the limit switch asso-
ciated with the direction of travel, motion is abruptly terminated
and position tracking is lost. The position report string associated
with the axis that caused the limit switch stop appears in the fol-
lowing format:

limit,<axis>,<direction>

COMMANDSMOVE

User GuidePage 150

DANGER
The limit switch detection features of this program are
designed only to provide limit detection within the normal
operating region of the device being controlled and NOT to
provide over-travel protection in cases where equipment
damage or personal injury may result. In cases where
equipment damage or personal injury is possible due to
over-travel, other means of limit protection is imperative.

Example:
The “a” axis motor is at a position of 200 steps relative to the home
position, which has been previously set by the command:

set_home:a

To move the “a” axis 500 steps in the negative direction issue the
command:

move:a,-500

The motor will move 500 steps in the negative direction and the fol-
lowing ASCII string appears in the mailbox:

-300

Example:
The “b” axis motor home position has been previously initialized
using the command:

set_home:b

However, after the last command to move the motor in the positive
direction, the motion of the motor was abruptly stopped by the clo-
sure of the high limit switch. The following message appears in the
mailbox:

limit,b,+

As long as this limit switch remains closed, the motor cannot be
moved in the positive direction. In this example, the motor is
backed away from the high limit switch by moving it in the nega-
tive direction using the following command:

move:b,-200

The motor moves 200 steps in the negative direction and the fol-
lowing string appears in the mailbox:

unknown position

Example:

MOVECOMMANDS

Page 151User Guide

Assume a motion system is comprised of three axes of motion con-
trolling linear motion of a stylus in the three dimensions. The three
Indexer LPT axes which are used are “a”, “b”, and “c”. The fol-
lowing command is issued:

move:a,1200,b,5000,c,-350

The “b” axis is the dominant axis, since it is required to move the
greatest amount. The stylus moves from its present position along
the “best fit” straight line path to a position 1200 steps in the “a”
direction, 5000 steps in the “b” direction and -350 steps in the neg-
ative “c” direction. The “b” axis will move and accelerate accord-
ing to motion parameters set up for the “b” axis. The other axes will
move as necessary to accomplish the linear interpolation. Assume,
for example, that all three axes were located at home position
before the move. After the motion is completed, the following mes-
sage appears in the mailbox:

1200:5000:-350

If the motion in this example was terminated by the closure of the
high limit switch of the “b” axis, the following message would
appear in the mailbox:

unknown position:limit,b,+:unknown position

Example:
Consider the following command:

move:a,12,b,500,c,-350,d,100,e,2000,f,-250

Six axes are moved simultaneously. Motion parameters set up for
the dominant “e” axis govern the dynamic characteristics for the
motion.

If all axes in this example had started movement from respective
home positions, the following message would appear in the mail-
box:

12:500:-350:100:2000:-250

COMMANDSMOVE

User GuidePage 152

POSITION?

Synopsis:
Read the contents of the position register.

Syntax:
position?:<axis>

Side Effects:
None

Returns:
An ASCII numeric string designating the number of steps from the
home reference previously established with the set_home command
is placed in the mailbox. This number can be either positive or neg-
ative.

If the home reference position has not been initialized, or if the ref-
erence position has been lost by a limit switch closure, the follow-
ing message appears in the mailbox:

unknown position

Example:
The following sequence of commands is executed:

set_home:c
move:c,5000
move:c,-200
position?:c

After the completion of this sequence the following ASCII numer-
ic string appears in the mailbox:

4800

POSITION?COMMANDS

Page 153User Guide

Q_BEGIN

Synopsis:
Append subsequent commands into the queue buffer.

Syntax:
q_begin

Side Effects:
This command initiates a queuing procedure. All appropriate
motion commands following this command will be entered into the
queue buffer. The queuing procedure is terminated by means of the
q_end command.

Following this command and before the q_end command, only
commands appropriate for queue processing will be entered into
the queue buffer. Other commands which may be used during the
queuing procedure are q_empty?, q_mem?, command_mem?, and
q_reset. The q_reset command terminates the queuing procedure
and clears the queue buffer.

The number of commands which can be accepted into the queue
buffer depends upon the size of the commands which are queued
and the size of the queue buffer.

Returns:
An ASCII numeric string designating the amount of memory which
is available in the queue buffer is placed in the mailbox. The ASCII
string comprises numeric characters followed by a space character
and the word “remains”.

As each command is entered into the queue during the queuing pro-
cedure, the amount of memory which remains available in the
queue buffer is reported in the mailbox.

If an attempt is made to queue a command when insufficient mem-
ory is available in the queue buffer to receive it, the following mes-
sage appears in the mailbox:

error,queue full

If an attempt is made to queue a command which is unsuitable for
queue processing, the following message appears in the mailbox:

error,queue

Example:
The following sequence queues three feed commands:

COMMANDSQ_BEGIN

User GuidePage 154

q_begin
feed:a,1000,b,500
feed:a,3000,b,700
feed:a,400,b,300,c,200
q_end

Assume in this example that 10000 bytes of memory is available
for use by the queue. After the q_begin command is issued, the fol-
lowing message appears in the mailbox:

10000 remains

After each command is queued, a similar message is placed in the
mailbox indicating the amount of remaining memory at that time.

After this queuing sequence, three feed commands occupy the
queue buffer. Assume that the “d” axis must be moved before exe-
cution of this sequence. The following command is issued:

feed:d,400

The “d” axis is immediately moved 400 steps.

Now assume that another command is to be added to the queue.
The following commands are issued:

q_begin
feed:a,1000,b,-400,c,-1000
q_end

Finally, when the q_go command is issued, the following four com-
mands are executed from the queue:

feed:a,1000,b,500
feed:a,3000,b,700
feed:a,400,b,300,c,200
feed:a,1000,b,-400,c,-1000

Q_BEGINCOMMANDS

Page 155User Guide

Q_EMPTY?

Synopsis:
Determine if there are any commands in the queue buffer.

Syntax:
q_empty?

Returns:
The mailbox contains an ASCII numeric character

1 the queue buffer is empty

0 the queue buffer is not empty

Example:
The following commands are issued:

q_reset
q_empty?

After this sequence the following ASCII character appears in the
mailbox:

1

COMMANDSQ_EMPTY?

User GuidePage 156

Q_END

Synopsis:
End entry of commands into the queue buffer.

Syntax:
q_end

Side Effects:
This command ends the queuing procedure which was initiated by
the q_begin command, and must be issued before the q_go com-
mand. If the queue is empty, this command has no effect.

Following the q_end command and before the q_go command,
commands which set parameters governing queuable commands
cannot be issued. For example, set_feed_highspeed,
set_feed_lowspeed, set_feed_accel, and set_vshift cannot be used
unless the queue buffer is empty. Other commands will be execut-
ed immediately.

Following termination of the queuing procedure by means of the
q_end command, the queuing procedure may be resumed by issu-
ing a q_begin command. Queuable commands will be appended to
the end of the queue. Once resumed, the queuing procedure must
be terminated by means of another q_end command before the
queue can be executed by means of q_go.

Returns:
An ASCII numeric string designating the amount of unused mem-
ory which is available in the queue buffer is placed in the mailbox.
The ASCII string comprises numeric characters followed by a
space character and the word “remains”.

Example:
The following sequence queues three feed commands:

q_begin
feed:a,1000,b,500
feed:a,3000,b,700
feed:a,400,b,300
q_end

The q_end command closes the queue entry procedure.

Example

Q_ENDCOMMANDS

Page 157User Guide

In a cutting tool application where the depth of the cutting tool is
controlled on the “d” axis, assume that it is desirable to load the
queue with the cutting tool retracted, lower the cutting tool, execute
the queue, then raise the cutting tool in preparation for the next
queue of commands. The procedure begins with the cutting tool
retracted so that the time spent loading the queue occurs while the
tool is not in contact with the work. (The “d” axis must be moved
before execution of the queued sequence). If the tool is extended
via negative steps on the “d” axis, the following sequence is used:

q_begin
feed:a,1000,b,500
feed:a,3000,b,700
feed:a,400,b,300
q_end
feed:d,-400
q_go
feed:d,400

Example:
Assume the following command is issued following q_end but
before q_go:

set_feed_highspeed:4000

The following message appears in the mailbox:

error,queue

Example:
The following commands are issued:
q_begin
feed:a,1000,b,-400,c,-1000,d,100
feed:a,200,b,1000
q_end
move:e,5000
q_begin
feed:a,700,b,1800
q_end
q_go

In this sequence, the “e” axis is moved first. After the “e” axis is
finished moving, the last feed command is appended to the end of
the queue. Finally, the q_go command causes the following com-

COMMANDSQ_END

User GuidePage 158

mands to be executed from the queue:

feed:a,1000,b,-400,c,-1000,d,100
feed:a,200,b,1000
feed:a,700,b,1800

Q_ENDCOMMANDS

Page 159User Guide

Q_GO

Synopsis:
Execute the remaining commands in the queue buffer.

Syntax:
q_go

Side Effects:
The commands in the queue buffer are executed using this com-
mand. The q_go command begins executing the commands in the
queue, starting with the first command in the buffer.

If queue execution has been suspended by means of an aborted feed
hold procedure, q_go will complete the execution of the remaining
commands in the queue buffer.

Returns:
After executing the last command in the queue buffer, the follow-
ing message appears in the mailbox:

finished

This message also appears in the mailbox if q_go is executed when
the queue buffer is empty.

Example:
Assume in this example that all associated axes begin from the
home position.

The following sequence queues and executes three feed commands:

q_begin
feed:a,1000,b,500
feed:a,1000,b,700
feed:a,1000,b,300,c,200
q_end
q_go

The q_end command closes the queue entry procedure and prepares
the queue for execution. The q_go command begins execution of
the queue, starting with the first feed command. If the queue is exe-
cuted to completion, the following message appears in the mailbox:

finished

Note that the position of the “a” axis upon completion would be

COMMANDSQ_GO

User GuidePage 160

3000.

Now assume in this example that the feed hold feature is enabled,
and the feed hold input is activated to bring motion to rest about
half way into the second command. At this point, all processes are
suspended. If the feed hold input is released, the queue will contin-
ue execution to completion, following the same path as in the pre-
vious example. Let us assume, however, that the abort input is acti-
vated. The following message appears in the mailbox:

abort

Now the feed hold input is released and the following command is
issued:

move:a,750

The “a” axis immediately moves 750 steps. Now this command is
issued:

q_go

The queue will continue execution as if the feed hold input had
been released from its first suspended state, except that the “a” axis
will have an offset of 750 steps. Upon completion of the queue exe-
cution, the position of the “a” axis will be 3750.

This example demonstrates the following two concepts:

1) If queue execution is suspended by means of a feed hold, the
q_go command resumes processing from the point in the contour
where motion stopped.

2) If motion commands are used in the interim, and if the position-
al integrity of the contour is to be preserved, then associated axes
must be returned to the position from which they were moved.

Example
In a practical application, assume that a cutting tool is being oper-
ated under control of an application program. Seeing that the cut-
ting tool is coming dangerously close to a clamp, the operator acti-
vates the feed hold input. Motion comes to a controlled stop. After
determining a remedy is in order, the operator activates the abort
input. Sensing the abort input via the message in the mailbox, the
application program reads the positions of all associated axes with
the position? command, then activates the joystick control by
means of joystick_go. Using the joystick, the operator moves the
cutting tool out of the way and repositions the clamp. Now the
operator uses the joystick to move the cutting tool close to the posi-
tion where the feed hold input interrupted the contour. When the
operator activates the switch which discontinues joystick action,
the application program reads the position of the axes again and
constructs a move command which brings the cutting tool to the

Q_GOCOMMANDS

Page 161User Guide

exact position where the contour was interrupted. The application
program then issues a q_go command to proceed cutting the con-
tour. Positional integrity throughout the path of the contour is there-
by maintained.

(It should be noted that the means of releasing feed hold and releas-
ing joystick control depends on the type of machine being
designed. In the interest of operator safety, some machines may
require self latching relays, multiple “start” push-buttons, or other
hardware features).

COMMANDSQ_GO

User GuidePage 162

Q_MEM?

Synopsis:
Determine how much memory is left in the queue buffer.

Syntax:
q_mem?

Returns:
An ASCII numeric string designating the amount of unused mem-
ory which is available in the queue buffer is placed in the mailbox.
The ASCII string comprises numeric characters followed by a
space character and the word “remains”.

Example:
Assume the size of the queue buffer is 10000 bytes, and 6000 bytes
are occupied. The following command is issued:

q_mem?

As a result, the following message appears in the mailbox:

4000 remains

Q_MEM?COMMANDS

Page 163User Guide

Q_RESET

Synopsis:
Clear the queue buffer. Discontinue queue processing.

Syntax:
q_reset

Side Effects:
This command makes all the memory in the queue buffer available.

If this command is executed from within a queuing procedure ini-
tiated by q_begin, the queuing procedure is terminated.

Returns:
An ASCII numeric string designating the amount of memory which
is available in the queue buffer is placed in the mailbox. The ASCII
string comprises numeric characters followed by a space character
and the word “remains”.

Example:
Assume the size of the queue buffer is 10000 bytes, and 6000 bytes
are occupied. The following command is issued:

q_mem?

As a result, the following message is placed in the mailbox:

4000 remains

Now the following command is issued:

q_reset

As a result, the queue buffer is cleared, and the following message
is placed in the mailbox:

10000 remains

Example:
The following sequence of commands is issued:

q_begin
feed:a,1000,b,500
feed:a,1000,b,700
q_reset

COMMANDSQ_RESET

User GuidePage 164

When q_reset is issued, the queue is emptied and queuing is termi-
nated. If for example, a feed command is issued following q_reset,
the feed command would be executed immediately and not entered
into the queue buffer. To resume queuing, q_begin must be issued.

Example:
The following sequence queues and executes four feed commands:

q_begin
feed:a,1000,b,1000
feed:a,1000,b,400
feed:a,1000,b,-1400
feed:a,-3000
q_end
q_go

The q_end command closes the queue entry procedure and prepares
the queue for execution. The q_go command begins execution of
the queue starting with the first feed command.

Assume in this example that the feed hold feature is enabled and
that the feed hold input is activated, bringing motion to rest before
the queue is completely executed. At this time the abort input is
activated. The process will immediately return with the following
message in the mailbox:

abort

The queue buffer is not empty. If queuing is initiated by means of
q_begin, ensuing commands would be added to the end of the exist-
ing queue. A q_end, q_go sequence would therefore begin execu-
tion from the point at which the feed hold suspended operation. If
a fresh queue is desired, q_reset must be issued before q_begin.

Example:
Assume from the previous example the operation of a cutting tool
where motion begins at location 0 for the “a” and “b” axes. Before
execution of the queue is complete, feed hold is activated and ter-
minated by means of the abort input. In this case a cutting tool
must be moved back to its original position and the operation start-
ed from scratch. Following the abort input, the following sequence
may be used:

home:a
home:b
q_reset

Q_RESETCOMMANDS

Page 165User Guide

q_begin
feed:a,1000,b,1000
feed:a,1000,b,400
feed:a,1000,b,-1400
feed:a,-3000
q_end
q_go

COMMANDSQ_RESET

User GuidePage 166

Q_WHERE?

Synopsis:
Report the entity in the queue buffer from which a feed-hold - abort
sequence has occurred.

Syntax:
q_where?

Side Effects:
This command is not appropriate when circular interpolation com-
mands are used in the queue buffer, as the circular interpolation
commands are comprised of varying numbers of feed entities.

This command is useful in determining the location in the queue
buffer that a feed-hold operation has occurred. An abort action is
necessary to allow the application program to access Indexer LPT.
A typical sequence is as follows:

1) The queue buffer is executed by means of a q_go command.

2) Before completion, motion is arrested by means of the feed-hold
input.

3) Control is returned to the application program by means of the
abort input.

4) The q_where? command is written to Indexer LPT.

5) An ASCII numeric value representing a one (1) based index of
the feed entity from which motion was arrested appears in the mail-
box.

Returns:
If there are no remaining entities in the queue buffer, the following
ASCII numeric value appears in the mailbox:

0

Otherwise, a one (1) based index into the feed entity list appears in
the mailbox.

Example:
The following sequence is written to Indexer LPT

:
q_begin
feed:a,100,b,500
feed:a,200,b,10

Q_WHERE?COMMANDS

Page 167User Guide

feed:a,300,b,40
q_end
q_go

During the execution of the third feed command, the feed-hold
input is activated, followed by the abort input. The following mes-
sage appears in themailbox

abort

The following command is then written to Indexer LPT

q_where?

The message shown below appears in the mailbox

3

The "3" means that an abort from a feed-hold condition occurred
within the third feed entry of the queue buffer.

Example:
The queue buffer is empty because it has not been loaded, or it has
run to completion, or it has been reset using a q_reset command.

The following command is written to Indexer LPT:

q_where?

The message below, which is an ASCII zero character, appears in
the mailbox:

0

COMMANDSQ_WHERE?

User GuidePage 168

REDUCED_CURRENT

Synopsis:
This command controls the reduced current output signal line.

Syntax:
reduced_current:<axis><logic level>

<logic level> Meaning

1 output voltage level is TTL high

0 output voltage level is TTL low

Side Effects:
For X group axes (see Figure 1, page 27) this command controls the
associated output voltage on connector pin 4. For Y group axes this
command controls the associated output voltage on connector pin
8.

Returns:
An ASCII numeric character appears in the mailbox which indi-
cates the logic level which has been established.

Example:
A computer system is configured such that a printer port which has
the base address of 378 (hex) is used as an Indexer LPT motor
controller. Consequently, pin 4 of this port connector corresponds
to the reduced current pin for the “c” axis, and pin 8 of this port
connector corresponds to the reduced current pin for the “d” axis.
The following command causes pin 4 of this card to assume a TTL
low voltage level:

reduced_current:c,0

After the execution of this command, the following ASCII charac-
ter appears in the mailbox:

0

The following command causes pin 4 of this card to assume a TTL
high voltage level:

reduced_current:c,1

After the execution of this command, the following ASCII charac-
ter appears in the mailbox:

1

REDUCED_CURRENTCOMMANDS

Page 169User Guide

REDUCED_CURRENT?

Synopsis:
Read the logic level of the associated reduced current output line.

Syntax:
reduced_current?:<axis>

Returns:
The mailbox contains an ASCII numeric character:

0 if the output voltage level is TTL low.

1 if the output voltage level is TTL high.

Example:
Assume the reduced current output signal line for the “c “ axis has
been previously set to a logic level of 1 (one). To make this value
appear in the mailbox, the following command is issued:

reduced_current?:c

As a result the following ASCII character appears in the mailbox:

1

COMMANDSREDUCED_CURRENT?

User GuidePage 170

SAVE_FRO_ENABLE

Synopsis:
Save the current contents of the fro_enable register to the system
Registry.

Syntax:
save_fro_enable

Side Effects:
The value saved will be restored to the fro_enable register the next
time Indexer LPT loads.

Returns:

An ASCII numeric string representing the current value of the
fro_enable register appears in the mailbox.]

SAVE_FRO_ENABLECOMMANDS

Page 171User Guide

SAVE_FRO_RES

Synopsis:
Save the contents of the fro_res register to the system Registry.

Syntax:
save_fro_res

Side Effects:
The value saved will be restored to the fro_res register the next time
Indexer LPT loads.

Returns:
An ASCII numeric string representing the current value of the
fro_res register appears in the mailbox.

COMMANDSSAVE_FRO_RES

User GuidePage 172

SCAN

Synopsis:
Check for a closed circuit condition between the designated output
and the designated input.

Syntax:
scan:<output axis>,<output bit>,

<input axis>,<input bit>

<output bit> Signal Line Name

0 Step

1 Direction

2 Reduced Current

3 All Windings Off

<input bit> Signal Line Name

0 Low Limit Switch Input

1 High Limit Switch Input

2 Auxiliary Input

Side Effects:
(Refer to the chapter entitled “Switch Scanning & Joystick” for a
more complete description of the switch scanning procedure).

This command requires that the output axis be set to mode 2 using
the axis command. When set to mode 2, all output bits associated
with the output axis are normally "high" (5 volts).

The scan command accomplishes the following sequence:

1) The specified output bit is momentarily brought low (0 volts).

2) During the time period when the specified output bit is low, the
specified input bit is sensed.

3) The output bit which was momentarily brought low is returned
to its normally high condition.

Open circuit voltage on the limit switch inputs are considered sta-
ble because these signals are internally pulled up to 5 Volts through
a resister on the printer card circuit. However, since on most print-

SCANCOMMANDS

Page 173User Guide

er cards the auxiliary input is a floating, it cannot be relied upon to
read "high" during a open circuit condition without an external pull
up resistor. To use as a scanning input, connect the auxiliary input
line to 5 volts through of a 4.7K ohm resistor).

Returns:
If the input bit sensed to be "low" during the time that the output bit
is "low", then the following message appears in the mailbox:

1

If the input bit sensed to be "high" during the time that the output
bit is "low", then the following message appears in the mailbox:

0

Example:
Consider the wiring in the diagram below represents connections to
the “e” axis. Also, assume that the “e” axis has been set up for
scanning using the following command:

axis:e,2

The following command sequence occurs:

axis:e,2
scan:e,2,e,0

If switch S3 is closed when the scan command is executed, the fol-
lowing message appears in the mailbox:

1

Otherwise, if switch S3 is open, the following message is returned:

0

COMMANDSSCAN

User GuidePage 174

Step (bit 0) Pin 6

Direction (bit 1) Pin 7

Reduced Current (bit 2) Pin 8

All Windings Off (bit 3) Pin 9 Pin 16

Low
Limit

Switch
Input
(bit 0)Example Wiring for Axis “e”

SET_ACCEL

Synopsis:
Set the acceleration register of the selected axis to the desired value
in steps per second-per second.

Syntax:
set_accel:<axis>,<value>

Side Effects:
When, for example, a move command is issued, the dominant axis
will begin moving at the rate set in the lowspeed register and accel-
erate towards the maximum velocity set in the highspeed register at
an acceleration rate which is set by this command. Deceleration
occurs at the same rate.

The value of the register cannot exceed the maximum capability of
the system, nor can it be lower than the minimum value of 1 step
per second-per second.

Returns:
If the new value is accepted, an ASCII string representing this value
appears in the mailbox. If the new value is out of range the follow-
ing message appears in the mailbox:

error,value

Example:
The acceleration register of the “a” axis is set such that subsequent
move commands may accelerate the motor at a rate of 1500 steps
per second-per second:

set_accel:a,1500

The following ASCII string appears in the mailbox:

1500

SET_ACCELCOMMANDS

Page 175User Guide

SET_ARCSEG_DEGREES

Synopsis:
Set the angle subtended over each segment of circular interpolation.

Syntax:
set_arcseg_degrees:<value>

Side Effects:
Circular interpolation commands, circle, arc_to_point, and
arc_to_angle, use linear segments to approximate the true theoret-
ical arc. Motion control follows the path of the chord of the arc seg-
ments designated by this command. The default value for each
chordal segment is five (5) degrees. Consequently, using the default
arcseg_degrees value, execution of a circle command would
approximate a true circle with 360/5 = 72 linear segments.

The resolution of the arc is not affected by this command. For
example, if the arcseg_degrees register is set to 5, and and the fol-
lowing command is issued:

arc_to_angle:ccw,a,0,b,1000,12

an arc of twelve (12) degrees will be subtended using three seg-
ments. Two segments of five (5) degrees, and on final segment of
two (2) degrees.

The minimum value accepted by this command is one (1). Using
the minimum value set up by this command of one (1) degree, a cir-
cle command would approximate a true circle using a polygon of
360 linear segments.

The maximum value accepted by this command is ninety (90).
Using the maximum value set up by this command of ninety (90)
degrees, the circle command would generate a polygon using of (4)
linear segments.

Returns:
An ASCII sting reflecting the value of degrees per arc segment is
placed in the mailbox

Example:
The following command sets the segment value to 2 degrees:

set_arcseg_degrees:2

The following string appears in the mailbox:

2

COMMANDSSET_ARCSEG_DEGREES

User GuidePage 176

Subsequent to this command, an arc of 90 degrees is generated
using the following command:

arc_to_angle:ccw,a,0,b,100,90

This command approximates the true theoretical arc using 90/2 =
45 linear segments.

SET_ARCSEG_DEGREESCOMMANDS

Page 177User Guide

SET_FEED_ACCEL

Synopsis:
Set the feed acceleration register to the desired value in steps per
second-per second. This register applies to all axes.

Syntax:
set_feed_accel:<value>

Side Effects:
When a feed command is issued, the dominant axis (the axis which
is to be moved the greatest extent) will begin motion at the rate set
in the feed_lowspeed register and accelerate towards its final veloc-
ity at an acceleration rate determined by the contents of the feed
acceleration register. Deceleration occurs at the same rate.

The value of the feed acceleration register cannot exceed the max-
imum capability of the system, nor can it be lower than a minimum
value of 1 step per second-per second.

Returns:
If the new value is accepted, an ASCII string representing this value
appears in the mailbox. If the new value is out of range the follow-
ing message appears in the mailbox:

error,value

Example:
The feed acceleration register is set such that subsequent feed com-
mands will accelerate the dominant axis at a rate of 1500 steps per
second-per second:

set_feed_accel:1500

The following ASCII string appears in the mailbox:

1500

COMMANDSSET_FEED_ACCEL

User GuidePage 178

SET_FEED_HIGHSPEED

Synopsis:
The feed_highspeed register is modified using this command. This
register applies to all axes.

Syntax:
set_feed_highspeed:<value>

Side Effects:
The maximum vector velocity after acceleration using the feed
command is set to the desired value in steps per second.

If allowed sufficient distance to travel, the dominant axis of a feed
command will accelerate such that the velocity along the path of
travel will reach the vector rate specified by the value of the
feed_highspeed register. The value of the feed_highspeed register
cannot exceed the maximum capability of the system, nor can it be
lower than the value set in the feed_lowspeed register. (The maxi-
mum speed the system is capable of can be determined using the
max_speed? command.

Returns:
If the new value is accepted, an ASCII string representing this value
appears in the mailbox. If the new value is out of range, or if the
value is smaller than the feed_lowspeed value, the following mes-
sage appears in the mailbox:

error, value

Example:
The feed_highspeed register is set such that subsequent feed com-
mands may accelerate to a vector velocity of 1000 steps per second.

set_feed_highspeed:1000

The following ASCII string appears in the mailbox:

1000

After the following command is issued:

feed:a,50000,b,50000

the dominant axis accelerates to a rate of 707 steps per second,
making the combined vector velocity 1000 steps per second.

SET_FEED_HIGHSPEEDCOMMANDS

Page 179User Guide

SET_FEED_LOWSPEED

Synopsis:
The feed_lowspeed register is modified using this command. This
register applies to all axes.

Syntax:
set_feed_lowspeed:<value>

Side Effects:
The starting feed velocity is set to the desired value in steps per sec-
ond.

When a feed command is issued, the dominant axis begins motion
at the rate set in the feed_lowspeed register. The default
feed_lowspeed value is 250 steps per second. This register cannot
be set to a value above the feed_highspeed register.

Returns:
If the new value is accepted, an ASCII string representing this value
appears in the mailbox. If the new value is out of range, or if the
value is greater than the feed_highspeed value, the following mes-
sage appears in the mailbox:

error,value

Example:
Set the feed_lowspeed register such that the feed command will
start the dominant axis at a rate of 500 steps per second:

set_feed_lowspeed:500

The following ASCII string appears in the mailbox:

500

COMMANDSSET_FEED_LOWSPEED

User GuidePage 180

SET_FRO_DELAY

Synopsis:
Change the value of the fro_delay register.

Syntax:
set_fro_delay:<value>

Side Effects:
The value of the fro_delay register affects the sensitivity of feed
rate override controls. Lower values increase sensitivity. Higher
values decrease sensitivity.

Returns:
An ASCII numeric string representing the value written to the
fro_delay register appears in the mailbox.

SET_FRO_DELAYCOMMANDS

Page 181User Guide

SET_FRO_ENABLE

Synopsis:
Change the value of the fro_enable register.

Syntax:
set_fro_enable:<value>

Side Effects:
The fro_enable register can be set to a value of "1" or "0". A value
of "1" enables the feed rate override feature. A value of "0" disables
it.

Caution
The feed rate override feature should not be enabled if
there exists an open circuit to the feed rate override input
pin on the Hardware Assist Module, as this will result in
erratic motor speeds.

The fro_enable register has no effect on software control over the
FRO feature via manipulation of the fro_offset register.

Returns:
And ASCII numeric string representing the value written to the
fro_enable register appears in the mailbox.

Example:
The following command is used to enable the feed rate override
feature:

set_fro_enable:1

As a result, the following character string appears in the mailbox:

1

COMMANDSSET_FRO_ENABLE

User GuidePage 182

SET_FRO_HIGH

Synopsis:
Change the value of the fro_high register.

Syntax:
set_fro_high:<value>

Side Effects:
The value written represents the percentage of feed rate override
that will be applied at the maximum limit.

Returns:
An ASCII numeric string representing the value written to the
fro_high register appears in the mailbox.

SET_FRO_HIGHCOMMANDS

Page 183User Guide

SET_FRO_HIGHVOLT

Synopsis:
Change the value of the fro_highvolt register.

Syntax:
set_fro_highvolt:<value>

Side Effects:
The value written represents the input voltage at the high limit of
the feed rate override input. This value is in units of 5/256 Volts,
and cannot exceed 256 (corresponding to an upper limit of 5 Volts).
This value must be greater than the value of the fro_lowvolt regis-
ter.

Returns:
An ASCII numeric string representing the value written to the
fro_highvolt register appears in the mailbox.

Example:
The following command sets the high limit voltage to 5.0 volts:

set_fro_highvolt:256

As a result, the number 256 is assigned to the fro_highvolt register
and the following ASCII numeric string appears in the mailbox:

256

COMMANDSSET_FRO_HIGHVOLT

User GuidePage 184

SET_FRO_LOW

Synopsis:
Change the value of the fro_low register.

Syntax:
set_fro_low:<value>

Side Effects:
The value written represents the percentage of feed rate override
that will be applied at the minimum limit.

Returns:
An ASCII numeric string representing the value written to the
fro_low register appears in the mailbox.

SET_FRO_LOWCOMMANDS

Page 185User Guide

SET_FRO_LOWVOLT

Synopsis:
Change the value of the fro_lowvolt register.

Syntax:
set_fro_lowvolt:<value>

Side Effects:
The value written represents the input voltage at the low limit of the
feed rate override input. This value is in units of 5/256 volts, and
cannot exceed the value of the "fro_highvolt" register.

Returns:
An ASCII numeric string representing the value written to the
fro_lowvolt register appears in the mailbox.

Example:
The following command sets the low limit voltage to approximate-
ly .02 Volts.

set_fro_lowvolt:5

As a result the the number 5, representing 5/256 = 0.01953 Volts, is
assigned to the fro_lowvolt register and the following ASCII
numeric string appears in the mailbox:

5

COMMANDSSET_FRO_LOWVOLT

User GuidePage 186

SET_FRO_OFFSET

Synopsis:
Change the value of the fro_offset register.

Syntax:
set_fro_offset:<value>

Side Effects:
The actual speed of operation will track the percentage override
determined by the sum of the values of the fro_offset register and
the operational (voltage controlled) feed rate override.

When the voltage controlled feed rate override (FRO) feature is dis-
abled (contents of the fro_enable register is "0"), the operational
FRO value is 100%. Otherwise, when FRO is enabled, the opera-
tional FRO value is determined by the external FRO input voltage.

The set_fro_offset command is acceptable for use within the queue
buffer, and will take effect as part of the queue execution sequence
(after q_go) provided there is at least one motion command pre-
ceding it. Otherwise, it will take effect immediately.

Using set_fro_offset within the queue buffer is an effective way to
change vector speeds within a complex contour.

Example:
Assume that the FRO feature is disabled and the feed_highspeed
register is 10000. Consider the following sequence:
q_begin
feed:a,82034
set_fro_offset:-20
feed:a,40000
q_end
q_go

Assume that during the first feed command acceleration to the
value of the feed_highspeed register occurs. After the completion of
the first feed command the motor speed will decelerate from its
value of 10000 steps per second to the FRO value of 100%-20% =
80%, or 8000 steps per second.

If the FRO feature were enabled, after the set_fro_offset command
the FRO value would be 20% less than the value established by the
FRO input voltage,but will not be smaller than the value set up in
the fro_low register.

SET_FRO_OFFSETCOMMANDS

Page 187User Guide

SET_FRO_RES

Synopsis:
Change the value of the fro_res register.

Syntax:
set_fro_res:<value>

Side Effects:
The value of the fro_res register determines the number of inter-
mediate speeds effected by feed rate override between the values
set by the fro_high and fro_low registers.

Returns:
An ASCII numeric string representing the value written to the
fro_res register appears in the mailbox.

COMMANDSSET_FRO_RES

User GuidePage 188

SET_HIGHSPEED

Synopsis:
The highspeed register for the associated axis is modified using this
command.

Syntax:
set_highspeed:<axis>,<value>

Side Effects:
The maximum move velocity after acceleration of the dominant
axis is set to the desired value in steps per second.

If allowed sufficient distance of travel, the dominant axis of a move
command will accelerate to a maximum rate specified by its asso-
ciated highspeed register. The value of the highspeed register can-
not exceed the maximum capability of the system, nor can it be
lower than the value set in the associated lowspeed register. (The
maximum speed the system is capable of appears in the mailbox
after issuing a max_speed? command).

Returns:
If the new value is accepted, an ASCII string representing this value
appears in the mailbox. If the new value is out of range, or if the
value is smaller than the lowspeed value, the following message
appears in the mailbox:

error,value

Example:
The highspeed register of the “a” axis is set such that subsequent
move commands may accelerate the dominant axis to a maximum
rate of 8500 steps per second:

set_highspeed:a,8500

The following ASCII string appears in the mailbox:

8500

SET_HIGHSPEEDCOMMANDS

Page 189User Guide

SET_HOME

Synopsis:
Establish the home reference position for the selected axis.

Syntax:
set_home:<axis>

Side Effects:
This command initializes the selected axis for position tracking. It
is also required if the home command is to be used.

Returns:
The following ASCII string, comprising four “zeros”, appears in
the mailbox:

0000

COMMANDSSET_HOME

User GuidePage 190

SET_JOGSPEED

Synopsis:
The jogspeed register for the associated axis is modified using

this command.

Syntax:
set_jogspeed:<axis>,<value>

Side Effects
The instantaneous jog velocity of the selected axis is set to the
desired value in steps per second.The default jogspeed value is 250
steps per second.

Returns:
If the new value is accepted an ASCII string representing this value
appears in the mailbox. If the new value is out of range the follow-
ing message appears in the mailbox:

error,value

Example:
The jogspeed register of the “c” axis is set such that subsequent jog
commands will cause the motor of the “c” axis to move at an
instantaneous rate of 500 steps per second:

set_jogspeed:c,500

The following ASCII string appears in the mailbox:

500

SET_JOGSPEEDCOMMANDS

Page 191User Guide

SET_LOWSPEED

Synopsis:
The lowspeed register for the associated axis is modified using this
command.

Syntax:
set_lowspeed:<axis>,<value>

Side Effects:
The starting move velocity of the selected axis is set to the desired
value in steps per second.

The default lowspeed value is 250 steps per second for all axes. The
set_lowspeed command allows this value to be changed to accom-
modate the dynamic characteristics of the application such as fric-
tion, stiction, and inertia. This register cannot be set to a value
above the highspeed register.

Returns:
If the new value is accepted, an ASCII string representing this value
appears in the mailbox. If the new value is out of range, or if the
value is greater than the value in the associated highspeed register,
the following message appears in the mailbox:

error,value

Example:
The lowspeed register “c” axis is set such that subsequent move
commands will cause the motor to start moving at a rate of 500
steps per second:

set_lowspeed:c,500

The following ASCII string appears in the mailbox:

500

COMMANDSSET_LOWSPEED

User GuidePage 192

SET_Q_MEM

Synopsis:
Set the amount of memory to be used by the queue buffer.

Syntax:
set_q_mem:<value>

Side Effects:
Memory allocated for the queue buffer is used exclusively used by
Indexer LPT, and is not shared with other programs in the system.
The argument passed in this command designates the amount of
memory requested. The amount of memory that Windows reserves
will usually differ somewhat from the amount requested.

The amount of memory reserved using this command is written to
the system Registry, and requested again the next time Indexer
LPT loads. It therby remains in effect until this command is used
again, even after the machine is turned off.

Returns:
The actual amount of memory that Windows reserved is returned in
an ASCII numeric string, available to be read from the mailbox.

Example:
The following command is used to reserve five megabytes in the
queue buffer:

set_q_mem:5000000

The mailbox returns the amount of memory actually allocated, such
as:

5001216

SET_Q_MEMCOMMANDS

Page 193User Guide

SET_VSHIFT

Synopsis:
Set the value governing the maximum instantaneous velocity shift
which can occur when a queue of commands is executed.

Syntax:
set_vshift:<value>
set_vshift:default

Side Effects:
During execution of a queue of commands, an instantaneous shift
in velocity is usually necessary to maintain position integrity when
passing from command to command. In order to avoid over-stress-
ing an axis, the velocity at the transition point is regulated so that
each axis does not exceed an allowable limit. This limit, called the
maximum instantaneous velocity shift, is determined by the values
of the feed_lowspeed, feed_highspeed and vshift registers.

The <value> represented in this command is in units of steps per
second and represents one half the maximum instantaneous veloci-
ty shift which is allowed to occur at maximum running speed
(feed_highspeed).

The maximum allowable instantaneous velocity shift is proportion-
ally greater at lower speeds. The speeds at which the maximum
allowable instantaneous velocity shift are greatest are those which
are at or below the starting velocity (feed_lowspeed). At or below
feed_lowspeed, the value of the maximum allowable instantaneous
velocity shift is two times the starting velocity (two times
feed_lowspeed).

The default value of the vshift register is calculated on the basis of
the values in the feed_lowspeed, feed_highspeed, and feed_accel
registers. Whenever the values of these registers are changed, the
default value of the vshift register is calculated and set.

Issuing the command:

set_vshift:default

also sets the value of the vshift register to the default setting.

The maximum value which can be entered into the vshift register
using the set_vshift command is the current value of the
feed_lowspeed register.

The command to command transition velocity is regulated for the
purpose of limiting acceleration forces which may overstress the
holding force of the step motors. The vshift register allows the reg-

COMMANDSSET_VSHIFT

User GuidePage 194

ulation to be adjusted for systems having different torque/speed and
inertia characteristics.

The optimum value chosen for the vshift register is often deter-
mined experimentally. Generally speaking, a higher value in the
vshift register will result in more consistent vector speed through-
out execution of the queue, and greater stresses when passing from
command to command.

Returns:
If the new value is accepted, an ASCII string representing this value
appears in the mailbox. Only whole number values are accepted.
However, the default value may be a fractional value. In the case of
the default setting, the numerical string returned represents the
closest whole number value.

If the new value is out of range, the following message appears in
the mailbox:

error,value

Example:
The following command is issued:

set_vshift:100

If the value of the feed_lowspeed register is at or above 100 steps
per second, the vshift register is changed to 100, and the following
ASCII string appears in the mailbox:

100

Example:
Assume the following settings: feed_lowspeed is 200, feed_high-
speed is 1000, vshift is 100.

The following command sequence is executed:

q_begin
feed:a,1000
feed:a,-1000
q_end
q_go

Since axis “a” is reversing direction, it will decelerate to
feed_lowspeed after the execution of the first feed command, then
immediately begin execution of the second command.
Consequently, the instantaneous shift in velocity at the completion

SET_VSHIFTCOMMANDS

Page 195User Guide

of the first command is two times the feed_lowspeed value, or 400
steps per second.

Example:
Assume the following settings: feed_lowspeed is 200, feed_high-
speed is 1000, vshift is 100.

The following command sequence is executed:
q_begin
feed:a,10000,b,10000
feed:a,-8660,b,5000
q_end
q_go

Before control is passed from the first feed command to the next,
the dominant axis automatically decelerates to avoid exceeding the
maximum allowable shift in velocity.

Example:
Assume the following settings: feed_lowspeed is 200, feed_high-
speed is 1000, vshift is 100.

The following command sequence is executed:

q_begin
feed:a,10000,b,1000
feed:a,10000,b,1050
q_end
q_go

When control is passed from the first feed command to the next, the
dominant axis (the “a” axis) does not decelerate to stay within max-
imum limits on instantaneous rate changes at the transition point.

COMMANDSSET_VSHIFT

User GuidePage 196

command: SN?

Synopsis:
Query the license serial number programmed into the Hardware
Assist Module.

Syntax:
sn?

Returns:
An ASCII numeric string representing the user license serial num-
ber appears in the mailbox.

SN?COMMANDS

Page 197User Guide

UNLOAD

Synopsis:
Unload the most memory intensive portion of Indexer LPT.

Syntax:
unload

Side Effects:
After execution of this command, the control program component,
IXCTRLW.EXE, terminates, leaving only the file I/O interface por-
tion of Indexer LPT in memory.

After IXCTRLW terminates, the following message appears in the
mailbox:

pre-initialized

Indexer LPT may be re-started by executing IXCTRLW.EXE from
a DOS command line, or by double snapping over it’s Shortcut
icon.

COMMANDSUNLOAD

User GuidePage 198

VSHIFT?

Synopsis:
Read the contents of the vshift register.

Syntax:
vshift?

Returns:
An ASCII numeric string representing the nearest whole number
value of the vshift register appears in the mailbox. (Refer to the
explanation of the vshift register in the section explaining the
set_vshift command).

Example:
Assume the value in the vshift register is 500 steps per second when
the following command is issued:

vshift?

As a result the following ASCII string appears in the mailbox:

500

Example:
Assume the vshift register contains a default value which is less
than one step per second. (The only time the vshift register can con-
tain a fractional value is by “default”). As a result of the vshift?
command, the following ASCII value appears in the mailbox:

0

VSHIFT?COMMANDS

Page 199User Guide

WINDING_POWER

Synopsis:
This command controls the all windings off output signal line.

Syntax:
winding_power:<axis>,<logic level>

<logic level> Meaning

1 output voltage level is TTL high

0 output voltage level is TTL low

Side Effects:
For X group axes this command controls the associated output volt-
age on connector pin 5. For Y group axes this command controls
the associated output voltage on connector pin 9.

Returns:
An ASCII numeric character appears in the mailbox which indi-
cates the logic level which has been established.

Example:
A computer system is configured such that a printer port which has
the base address of 378 (hex) is used as an Indexer LPT motor
controller. Consequently, pin 5 of this port connector corresponds
to the all windings off pin for the “c” axis, and pin 9 of this port
connector corresponds to the all windings off pin for the “d” axis.
The following command causes pin 5 of this card to assume a TTL
low voltage level:

winding_power:c,0

After the execution of this command, the following ASCII charac-
ter appears in the mailbox:

0

The following command causes pin 5 of this card to assume a TTL
high voltage level:

winding_power:c,1

After the execution of this command, the following ASCII charac-
ter appears in the mailbox:

1

COMMANDSWINDING_POWER

User GuidePage 200

WINDING_POWER?

Synopsis:
Read the logic level of the associated all windings off output line.

Syntax:
winding_power?:<axis>

Returns:
The mailbox contains an ASCII numeric character:

0 if the output voltage level is TTL low.

1 if the output voltage level is TTL high.

Example:
Assume the winding power output signal line for the “c “ axis has
been previously set to a logic level of 1 one. To make this value
appear in the mailbox, the following command is issued:

winding_power?:c

As a result the following ASCII character appears in the mailbox.

1

WINDING_POWER?COMMANDS

Page 201User Guide

COMMANDS

User GuidePage 202

Chapter 12

RESPONSE MESSAGE

< ASCII Numeric Value >
An ASCII numeric string which represents the position of the axis
relative to the reference home position appears in the mailbox as a
result of the move, feed, jog, or position? command. Position track-
ing, which is initialized with the set_home command, must be in
effect.

<ASCII Numeric Value>:<ASCII Numeric Value>
After completion of multiple axis moves, axis position information
appears in the mailbox in the order in which the axes were desig-
nated on the command line. Information relating to each axis is sep-
arated by a colon (:).

abort
A motion command which was in the process of being suspended
by means of the feed hold input was terminated by means of the
abort input.

error,axis
The <axis> argument of a command was not ‘a’, ‘b’, ‘c’, ‘d’, ‘e’,
or ‘f’.

error,axisRESPONSE MESSAGE

Page 203User Guide

error,disabled
An attempt has been made to use either the feedhold? or abort?
command without first enabling the feed hold feature.

error,feedhold is enabled
An attempt has been made to change the mode of an axis which has
been set up to support the feed hold feature. (First the feed hold fea-
ture must be disabled. Only then can the mode be changed to sup-
port motor control).

error,HAM
The Hardware Assist Module is either disconnected or malfunc-
tioning.

error,mode
The mode of the axis is incompatible with the command which was
issued. This error is generated, for example, if motor control was
attempted on an axis set up for digital output, or if digital output
(using the bit command) was attempted on an axis set up for motor
control.

error,portmissing
The printer port associated with the selected axis is not installed in
the system.

error,position
A home command was issued for an axis having un-initialized or
invalid position tracking.

error,queue
An attempt has been made to queue a command unsuitable for
queuing, or an operation has been attempted which is inconsistent
with queue processing procedure.

error,queue full
Insufficient memory remains in the queue buffer.

error,syntax
The command was not recognized.

RESPONSE MESSAGEerror,syntax

User GuidePage 204

error,value
The <value> argument of a command was either out of the allow-
able range, or contradicts a setup value.

finished
Normal completion of a command which supports no other means
of mailbox communication.

limit,<axis>,<direction>
This message is given instead of an ASCII numeric string if a limit
switch closure interrupts a motion command. The value for <axis>
is the axis which has been interrupted: ‘a’, ‘b’, ‘c’, ‘d’, ‘e’, or ‘f’.

The value for <direction> is the direction of movement: ‘+’, or ‘-’.

none
The feed hold feature was not enabled before execution of the feed-
hold_input? command.

not supported
Response to an inappropriate query, such as:

command_mem?:set_highspeed

pre-initialized
The file I/O interface device driver has been loaded, but the control
program component of Indexer LPT has either terminated
(through an unload command), or has not been run.

unknown position
This message is given instead of an ASCII numeric string because
axis position tracking has not been initialized by the set_home com-
mand, or because position tracking has been lost due to a limit
switch closure.

unknown positionRESPONSE MESSAGE

Page 205User Guide

RESPONSE MESSAGE

User GuidePage 206

